更广泛的背景 可充电电池仍然是便携式电子设备、混合动力电动汽车和电动汽车的限制组件,这促使人们开展研究以提高锂离子电池,特别是正极材料的能量密度、功率容量和安全性。此外,电能储存在应对全球变暖的全球战略中发挥着关键作用。对于电网储存应用,需要低成本、维护成本低且充放电循环寿命长的电池技术。在过去几年中,具有阳离子无序岩盐型结构的锂过渡金属氧化物已成为潜在的高能量密度正极。当制备过量的锂含量时,这些化合物可以成为合理的离子和电子导体,这一认识导致人们研究这种结构空间中的大量成分。目前,几种阳离子无序岩盐正极已经表现出非常高的比容量和高达 1000 W h kg 1 的能量密度,远远超过市售的层状锂过渡金属氧化物正极。阳离子无序的岩盐阴极也有望整合廉价且地球丰富的过渡金属物质,从而为大规模电力运输和电网存储应用提供更可持续的电池化学反应。
摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
摘要:智能家居中电力和信息的双向通信有利于对具有充电和放电能力的设备(如电动汽车和电力存储系统)进行优化管理。这些设备的调度可以考虑家用可再生能源装置、家庭能源消耗、电网电价和其他预定参数,以提高其效率以及智能家居的技术和经济指标。本文研究了一种基于决策向量和层次分析法的新型框架,以找到这些设备的最佳运行时间表,从而实现智能家居的日前性能。电动汽车和电力存储系统的初始数据是随机建模的。这项工作的目的是通过电动汽车和电力存储系统的优化运行来最大限度地降低智能家居的电力成本和峰值需求。首先,根据市场价格、家用光伏板的发电功率和智能家居的电力需求,引入这些设备充电和放电的不同决策向量。其次,利用层次分析法实现各类决策准则的优先级别,并计算最终决策向量。最后,考虑电动汽车与储能设备的运行约束以及充放电优先级约束,基于最终决策向量选择电动汽车与储能系统的运行计划。将所提方法应用于考虑不同决策准则优先级别的样本智能家居。数值结果表明,虽然电力需求排序较高的决策准则组合对智能家居的技术经济指标改善效果最好,分别约为12%和26%,但所提方法在所有场景下均具有合适的性能,可用于选择电动汽车与储能系统的最优运行计划。
摘要:纳米尺寸的电池型材料应用于电化学电容器中,可以有效减少电导率低、体积变化大带来的一系列问题,但这种方式会导致充放电过程以电容行为为主,造成材料的比容量严重下降。通过控制材料颗粒为合适的尺寸以及合适的纳米片层数,可以保留电池型行为而维持较大的容量。本文在还原氧化石墨烯表面生长典型电池型材料Ni(OH)2,制备复合电极,通过控制镍源的用量,制备出合适Ni(OH)2纳米片尺寸和合适层数的复合材料,在保留电池型行为的情况下获得了高容量的电极材料,制备的电极在2 A g −1 时比容量为397.22 mA hg −1。当电流密度增加到20 A g − 1 后,保持率高达84%。制备的非对称电化学电容器在功率密度为1319.86 W kg − 1 时的能量密度为30.91 W h kg − 1,20 000次循环后保持率可达79%。我们主张通过增加纳米片的尺寸和层数来保留电极材料电池型行为的优化策略,这可以显著提高能量密度,同时结合电化学电容器的高倍率性能的优势。■ 介绍
近几年来,电池需求量最大,在移动电子设备、电网和电动汽车中的大规模应用是环保的最新优势 [1- 5]。离子电池需求量最大。与其他具有较长充放电周期和较高能量密度的电池相比,锂离子 (LIB) 是最先进、最稳定的电池技术 [6–9]。钠离子电池 (NIB) 的需求量也很大,因为它们的化学性质相似、存储容量高,而且是地球上最丰富的材料,这使得钠可以与锂竞争。大量实验表明,2D材料表现出高容量[10-14],低开路电压,良好的循环稳定性,其中实验合成的MAX相2D MXenes M n+1 AX n(n=1,2,3..)在电池负极材料中显示出更好的效果,其中M为过渡金属族(Ti,V,Zr,Hf等),A为13-14族元素(Si,Al,Ge,Ga等),X为碳化物或氮化物族[15-21]。其中Ti 3 C 2 报道的容量为410 mAhg -1 Li原子/1C[22]。同时,密度泛函理论(DFT)预测其容量为320 mAh.g -1 。在用卤素基团(F、OH 等)封端后形成 Ti 3 C 2 Li 2 ,锂容量会大幅降低 [23]。最近,通过 Hf 3 [Al(Si)] 4 C 6 固溶体和氢氟酸选择性蚀刻合成了 MXenes Hf 3 C 2
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容
新疆师范大学化学化工学院,乌鲁木齐 830054 新疆,中国 * 电子邮件:suzhixj@sina.com 收稿日期:2019年11月8日 / 接受日期:2020年1月9日 / 发表日期:2020年5月10日 电极废弃物 LiNi 0.5 Co 0.2 Mn 0.3 O 2 回收的关键是有效地将正极材料与金属Al箔分离,以提高回收率。本文描述的方法利用有机溶剂与聚偏氟乙烯 (PVDF) 的相容性、超声波引起的空化和对流效应以及 PVDF 的分解温度。探索了超声处理持续时间、有机溶剂类型、有机溶剂与正极材料的比例、搅拌温度、搅拌时间、超声处理和搅拌顺序以及煅烧温度,以确定最佳条件。由此确定最佳剥离效率约为 93 %。将经有机溶剂预处理后的正极材料进行煅烧,通过 600 ℃煅烧有效去除 PVDF 粘结剂,在 800 ℃煅烧可得到具有合适层状结构和最好电化学性能的正极材料,首次放电比容量为 164.2 mAh g -1 。经过 50 次充放电循环后放电比容量为 132.4 mAh g -1,容量保持率为 80.6 %。关键词:LiNi 0.5 Co 0.2 Mn 0.3 ;回收利用;溶剂溶解法;电极废料;超声波 1. 引言
摘要:风能的随机性是造成风电场能量利用率低的重要原因,采用压缩空气储能系统(CAES)可以在提高风能利用率的同时降低风力发电的随机性。然而CAES系统容量配置不合理,导致资金投入高、回收期长。为提高储能的经济效益,本文研究风能不确定条件下压缩空气储能系统的容量配置。首先利用历史数据获取风电发电的典型小时功率分布,考虑用户负荷需求、电网分时电价、系统投资成本、缺电成本、售电收益等因素。然后以CAES系统充放电功率和储气容量为约束,以投资回报率最大和储气罐容积最小为目标,建立模型,采用NSGA-II和TOPSIS优选方法对问题进行求解。最后利用该模型对某电力运行案例进行优化,结果表明:在某工厂每小时负荷用电需求为3.2 MW的情况下,风电场每天需维持4台风电机组运行,采用额定功率1 MW、额定容量7 MW的压缩空气储能系统可保证最佳项目效益,在此模式下每年可减少弃风电量1.24×10 3 MWh,运行周期内通过增加储能可减少2.6×10 4 kg碳排放,投资回收期仅为4.8年。
电池储能系统协同优化和光伏发电的不确定性可能会给电网带来额外负担,影响供需平衡。为了解决这个问题,明智的调度优化提供了一个有效的解决方案。在本研究中,考虑到插电式电动汽车和间歇性光伏发电的充放电管理,开发了一种新颖的多能源协同系统调度框架,用于解决电网不稳定性和不可靠性问题。这形成了一个大规模混合整数问题,需要一个强大而有效的优化器。提出了一种新的基于二进制级别的学习优化算法来解决非线性大规模高耦合机组组合问题。为了研究所提方案的可行性,进行了考虑多种机组数量尺度和各种场景的数值试验。最后,结果证实了所提出的调度框架在解决机组组合问题上是合理有效的,可以实现 3.3% 的成本降低,并在处理大规模能源优化问题方面表现出色。插电式电动汽车、分布式可再生能源发电和电池储能系统的集成已被验证可在高峰时段降低 192.72 MW 机组的输出功率,从而提高电网稳定性。因此,优化能源利用和分配将成为未来电力系统不可或缺的一部分。
收到日期:2023 年 7 月 12 日 修订日期:2023 年 8 月 26 日 接受日期:2023 年 9 月 14 日 发表日期:2023 年 9 月 30 日 摘要 - 纳米技术正在改变能源解决方案;该研究涵盖了功能性和智能纳米材料的最新能源应用。纳米材料用于能量转换、存储、收集和效率。纳米材料改进了太阳能电池、燃料电池和热电装置。它们巨大的表面积和可配置的带隙提高了能量转换性能。锂离子电池、超级电容器等中的纳米材料彻底改变了能源存储。纳米结构电极和纳米复合材料提高了能量密度、循环稳定性和充放电速率。压电和摩擦电纳米发电机可以捕获环境能量用于自供电设备。纳米材料还可以提高能源管理系统的效率。使用纳米材料的智能窗户可以管理光和热传递,从而节省建筑物的能源。纳米传感器通过实时监控和优化能源来提高能源效率。本文还探讨了扩大纳米材料生产和制造规模以用于大规模应用的问题。纳米材料集成到能源设备中需要稳定性、可靠性和安全性。这篇评论文章总结了目前对能源领域功能性和智能纳米材料的研究及其解决全球能源问题的潜力。它有助于学者、工程师和政治家创造可持续和高效的能源解决方案。