低维材料表现出奇特的物理特性。其中,过渡金属二硫属化物 (TMDs) 层状半导体材料,例如 MoS 2 、MoSe 2 、MoTe 2 、WS 2 、WSe 2 、WTe 2 和 PdSe 2,作为后硅时代的可能候选材料而备受关注 [1]。这些二维 TMD 纳米材料的单层 [2] 作为半导体,表现出高效的光吸收率,从而可制成高响应度的光电探测器 [3]。TMD 的主要技术特性以 MX2 形式呈现。其中,M 是由六边形排列的原子组成的薄片,堆叠在两层 X 原子之间。这些晶体的三层被弱范德华力夹住,导致块状晶体分离为单个二维薄片 [4]。相邻三层之间缺乏共价键,导致2D TMD 薄片中悬挂键短缺。
摘要:通过在薄 AuAl 2 膜中发射表面等离子体 (SP),我们确认金属间化合物 AuAl 2 的异常紫色是由等离子体引起的。我们测量了 SP 色散关系,还使用标准 SP 共振传感技术使用这些薄膜测量了蔗糖溶液的折射率。我们发现平面 AuAl 2 中的 SP 能量约为 2.1 eV,比金低约 0.4 eV,并且该材料具有很强的抗氧化性。这与之前报道的 AuAl 2 介电函数测量结果接近。在此基础上,我们预测 AuAl 2 纳米粒子将具有非常强的、光谱几乎均匀的光吸收率,比标准炭黑高出大约一个数量级。因此,此类粒子可能在光热疗法或太阳能蒸汽生成或等离子体催化等领域中用作遮蔽剂或替代更复杂的吸光金结构。
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
摘要 激光已被证明是一种成熟且用途广泛的工具,与其他现有的微加工技术相比,它为各种材料的精密工程提供了极大的灵活性和适用性。过去几十年来,激光得到了迅速发展,并被广泛应用于从科学研究到工业制造的各个领域。透明硬质材料由于硬度高、脆性大、光吸收率低,一直是传统激光加工技术的几大技术挑战。为克服这些障碍,人们开发了各种混合激光加工技术,例如激光诱导等离子辅助烧蚀、激光诱导背面湿法蚀刻和蚀刻辅助激光微加工。本文回顾了这些混合技术的基本原理和特点,介绍了这些技术如何用于精密加工透明硬质材料及其最新进展。这些混合技术在透明硬质基底表面或内部制备微结构和功能器件方面表现出了显著的效率、精度和质量优势,使其在微电子、生物医学、光子学和微流控等领域具有广泛的应用前景。本文还对混合激光技术进行了总结和展望。
f NIRS 功能性近红外光学成像系统可测量人类受试者前额叶皮层的氧气水平变化。每个 f NIRS 系统均可在受试者进行测试、执行任务或接受刺激时实时监测大脑组织氧合情况,并允许研究人员在受试者执行认知任务时定量评估大脑功能(例如注意力、记忆力、计划和解决问题)。f NIRS 设备提供血红蛋白水平的相对变化,使用改进的比尔-朗伯定律计算得出。受试者在前额佩戴 f NIRS 传感器(安装在柔性带上的红外光源和探测器),可检测前额叶皮层的氧气水平并提供氧合血红蛋白和脱氧血红蛋白的实时值。它可以持续实时地显示受试者执行不同任务时的氧气变化。受试者可以坐在电脑前进行测试或执行移动任务。它与刺激呈现系统和 BIOPAC 的虚拟现实产品集成。功能强大的 f NIR 光谱成像工具可测量含氧和不含氧血红蛋白血液中的 NIR 光吸收率,并提供与功能性 MRI 研究类似的持续大脑活动信息。它消除了 f MRI 的许多缺点,为认知功能评估提供了一种安全、经济、无创的解决方案。该技术为研究人员提供了更大的研究设计灵活性,包括在复杂的实验室环境中工作,以及在非传统实验室位置进行实地研究。
解释协议根据上述条款获得豁免的原因:该项目将涉及在现有停车场内安装太阳能光伏车棚系统。光伏系统安装包括新混凝土桩上的钢制车棚结构和用于将系统连接到 12 kV 微电网环路的电气管道。所有太阳能光伏板都将具有防眩光涂层,以最大程度地提高光吸收率并最大程度地减少眩光。太阳能光伏系统运行产生的任何潜在眩光都将降至最低。与每个太阳能光伏阵列相关的设备将不会占用超过 500 平方英尺的地面面积,并将与太阳能电池板位于同一地块上(APN 406-051-13-00 和 406-070-10-00)。该项目不涉及场外联邦“清洁水法”许可证;根据波特-科隆水质控制法规定的废物排放要求;受联邦“濒危物种法”或“加州濒危物种法”保护的物种的附带捕获许可证;根据加州鱼类和狩猎法,河床改造许可证;或移除受保护或本地植物和树木。出于这些原因,根据《公共资源法典》第 21080.35 节的规定,该项目的光伏部分在法定上免于 CEQA,规定在现有建筑物屋顶或现有停车场安装太阳能系统。
烛烟纳米粒子 (CSNP) 在制造光学超声 (OpUS) 发射器方面显示出巨大的潜力。它们合成简单、成本低廉,同时其独特的多孔结构能够实现快速的热扩散率,有助于产生高分辨率临床成像所需的高频超声波。当用作包含凹面和平面的宏观 OpUS 发射器时,这些复合材料已展示出较高的超声波生成性能,可显示临床相关的细节,但是,对于将这种材料的技术转化为制造用于微创干预图像引导的光纤发射器的研究较少。本文报道了两种纳米复合材料的制造方法,即将 CSNP 嵌入聚二甲基硅氧烷 (PDMS) 中,并使用两种不同的优化制造方法沉积到光纤端面上:“一体化”和“直接沉积”。两种纳米复合材料均呈现出光滑的黑色圆顶结构,最大圆顶厚度为 50 µ m,宽带光吸收率(500 至 1400 nm 之间 > 98%),并且两种纳米复合材料均产生高峰间超声压力(> 3 MPa)和宽带宽(> 29 MHz)。此外,还展示了离体羔羊脑组织的高分辨率(< 40 µ m 轴向分辨率)B 型超声成像,展示了 CSNP-PDMS OpUS 发射器如何实现生物组织的高保真微创成像。
摘要:关于添加石墨烯增强体来改善氧化铝 (Al 2 O 3 ) 陶瓷材料微加工性能的研究仍然太少且不完整,无法满足可持续制造的要求。因此,本研究旨在详细了解石墨烯增强体对提高 Al 2 O 3 基纳米复合材料激光微加工性能的影响。为此,使用高频感应加热工艺制备了高密度 Al 2 O 3 纳米复合材料样品,其中石墨烯纳米片 (GNP) 的含量为 0 wt.%、0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.%。对样品进行激光微加工。之后,研究了 GNP 含量对烧蚀深度/宽度、表面形貌、表面粗糙度和材料去除率的影响。结果表明,纳米复合材料的微加工性能受到 GNP 含量的显著影响。与基础 Al 2 O 3(0 wt.% GNP)相比,所有纳米复合材料的烧蚀深度和材料去除率均有所改善。例如,在更高的扫描速度下,与基础 Al 2 O 3 纳米复合材料相比,GNP 增强样品的烧蚀深度增加了 10 倍。此外,与基础 Al 2 O 3 样品相比,0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.% GNP/Al 2 O 3 纳米复合材料的 MRR 分别增加了 2134%、2391%、2915% 和 2427%。同样,与基础 Al 2 O 3 相比,所有 GNP/Al 2 O 3 纳米复合材料样品的表面粗糙度和表面形貌都有了显著改善。这是因为 GNP 增强体通过增加光吸收率和热导率并减小 Al 2 O 3 纳米复合材料的晶粒尺寸,降低了烧蚀阈值并提高了材料去除效率。在 GNP/Al 2 O 3 纳米复合材料中,0.5 wt.% 和 1 wt.% GNP 样品在大多数激光微加工条件下表现出优异的性能,缺陷最少。总体而言,结果表明,使用基本光纤激光系统(20 瓦)和非常低功耗,可以高质量、高生产率地加工 GNP 增强 Al 2 O 3 纳米复合材料。这项研究表明,在氧化铝陶瓷基材料中添加石墨烯以提高其可加工性具有巨大的潜力。