摘要 本研究旨在分析两种浮萍:青萍和浮萍在不同温度(15–25 °C)和光周期(12–24 小时)组合下生长发育的情况,同时控制电导率、pH 值和氧含量等物理化学参数。将植物置于合成氮培养基中,并监测其生长 40 天。使用方差分析 (ANOVA) 和主成分分析 (PCA) 等统计学方法进行数据分析。结果表明,这两种浮萍在较高温度(25 °C)和较长光周期(24 小时)下生长得更好。在最佳条件(25 °C 和 12 小时光周期)下,青萍的表面积覆盖率高达 58.4%,生物量超过 1.44 克鲜重,表明其能高效利用有利条件。而 Lemna trisulca 在极端条件下(15 °C 和 12 小时光照周期)表现出更稳定的生物量(1.03 克鲜重)增长和 45.8% 的覆盖率。关于对变化的物理化学条件的适应性,Lemna minor 对有利参数的响应更好,在最佳 pH 6.05 和电导率 31.6 µS/cm 下实现更高的生长率,而 Lemna trisulca 即使在变化更大的条件下也表现出稳定的生长,在较高电导率(583 µS/cm)和较低 pH(6.96)下生长下降最小。研究结果表明,Lemna minor 在最佳条件下更具竞争力,这可能是由于其更有效地利用了可用资源。其快速生长使其在生物修复中特别有价值,而 Lemna trisulca 可能更好地应对变化的水生条件。结论强调了这两个物种之间的适应性差异,这对于管理水生生态系统具有重要意义。浮萍适合于稳定的环境,而浮萍则适用于变化多端的条件,这表明它们在环境保护和生物修复方面具有多种潜在用途。这些研究为浮萍的适应能力提供了重要数据,这对于有效管理水生生态系统至关重要。
大多数玉米模型旨在预测谷物产量对环境的响应。,但它们在所包括的生物过程的类型和复杂性方面有所不同。这些差异在预测物候学的技术中尤为明显。runge-bert模型没有尝试预测发展。分裂模型和Simaiz均通过累积度数来预测生长阶段。当总和达到指定值时。假定植物处于下一阶段。没有尝试量化光周期灵敏度。'rhe“能量作用生长”模型还仅基于温度来预测物候学。温度函数是一系列适合生长率数据的四线。“生物温度”模型将遗传,光周期和当时的因子总和,以预测粘土到流苏起始的数量。玉米和玉米片,每种使用光周期和温度来预测发展。在这两种情况下,苯酚比在敏感基因型中延迟流苏启动并增加了叶子的最终数。但是,Ceres-Maize提供了一个更详细的预测阶段和数字的系统,并且可以更容易地测试和验证其组件。最近,在日本描述了一个物候模型,其中包括叶子起始,叶子胶结外观和类似于Ceres-Maize的发育阶段。M9在此模型中,DEVE速率是温度依赖性的,并且忽略了光周期敏感性。
速度繁殖已成为一种变革性的方法,可以通过优化环境条件来实现快速生成营业额来加快农作物的改善。该技术操纵了诸如光周期,温度,光强度和营养等因素,以加快植物生长和繁殖周期。通过每年4-6代的生产,而传统育种中的1-2代,速度繁殖却可以使作物品种快速发展具有增强的产量潜力,生物和非生物压力弹性,提高营养质量和气候适应性的潜力。关键原理涉及剪裁光周期,控制温度,采用专业照明,创建受控环境并制定目标营养。速度育种在谷物,豆类,蔬菜和其他农作物中具有多种应用,可以加速理想特征的渗入,有效的杂种
植物是无柄生物,已经获得了高度塑料发育策略以适应环境。在这些过程中,口腔过渡对于确保生殖成功至关重要,并且受到多个内部和外部遗传网络的最终调节。控制植物对白天长度的响应的光周期途径是控制流动的最重要的途径之一。在ara-bidopsis光周期旋转中,constans(CO)是中心基因,它在漫长的一天结束时在叶片中激活了叶片开花基因座t(ft)的表达。昼夜节律强烈地表达了CO的表达。迄今为止,尚无关于从光周期途径回到昼夜节律的反馈回路的证据。使用转录网络,我们确定了相关的网络图案,可以调节昼夜节律之间的相互作用。基因表达,染色质免疫沉淀实验和表型分析使我们能够阐明CO在昼夜节律中的作用。植物具有改变的CO表达的植物显示出不同的内部时钟周期,通过每日叶子节奏运动来衡量。我们表明,通过与启动子上的特定位点结合,CO上调了与昼夜节律时钟相关的关键基因的表达,例如CCA1,LHY,PRR5和GI。CO上的大量PRR5抑制靶基因上调,这可以解释COCo-Prr5复合物与BZIP转录因子HY5相互作用,并有助于将复合物定位在时钟基因的启动子中。总而言之,我们的结果表明,可能有一个反馈循环,可以在其中将循环回到昼夜节律时钟,从而为昼夜节律提供了季节性信息。
在智能温室农业中,光品质对植物生长和发育的影响至关重要,但缺乏对最佳组合的系统识别。这项研究通过分析了使用天数与花园(DTF)和下型基因长度作为测量植物生长和发育的代理来解决对拟南芥拟南芥生长的各种效果(光周期,强度,比例,光黑暗顺序)来解决这一差距。通过全面的文献综述建立了合适的范围后,这些特性在这些范围内变化。与白光相比,蓝光的16小时循环分别将DTF和下胚轴长度降低了12%和3%。有趣的是,可以使用14小时光的光周期(由8小时的66.7 µ mol/m 2 S - 1红色和800 µ mol/m Mol/m 2 S - 1
超快电子显微镜提供了一种类似电影和时间的材料结构动力学的访问,但是到目前为止,基本原子运动或电子动力学的速度太快而无法解决。在这里,我们通过激光生成的Terahertz光的单光周期报告了透射电子显微镜中电子脉冲的全光控制,压缩和表征。这个概念提供了孤立的电子脉冲,并将透射电子显微镜的空间分辨率与通过激光光周期提供的时间分辨率合并。我们还报告了多电子状态的全光控制,并在时域中找到了实质性的两电子和三电子反相关。这些结果开辟了可能性原子和电子运动的可能性,以及它们在时空中基本维度上的量子相关性。
大豆 [ Glycine max (L.) Merr.] 的产量和成熟度之间存在不利的相关性,这使得育种者很难创造出适应特定种植区域的高产品种。大豆品种根据其光周期敏感性分为 12 个成熟度组,而光周期敏感性主要由一些主要成熟度基因(E 基因)的等位基因变异决定(Langewisch 等人,2017 年)。尽管新大豆品种的营销是根据其光周期适应性针对特定种植区域进行的,但不利条件的出现会限制特定区域可实现的最大产量。因此,成功新品种的产量要求因种植区域而异,相同的产量在一个地区被认为非常好,但在另一个地区却被认为太低。因此,育种者必须谨慎确定他们的综合育种目标,以在所需的成熟度范围内实现尽可能高的产量。
摘要。小球藻已被广泛用于生物能源,环境保护,还原,食物,药物和其他领域。在本文中,近年来通过文献综述对小球藻的优化进行了全面分析。结果表明,在5500-7000LUX的光强度范围内,小球藻的生物量积累速率更快,但是小球藻的生长速率在极高的光强度范围内达到了限制的10000-14000LUX蓝色和绿光,对生物量和光合色素颜料的效应最大,对氯菌的积累;蓝色和绿光单色光培养模式的脂质产量最高。在蓝白色的光中添加绿光,红白色的浅色和白色绿色的光对小球藻的脂质积累有益。在24小时培养模式下,14L:10D的低频光周期通常是最佳方案。根据上述结论,光条件,复合光对小球藻的影响和最佳的低频光周期将是未来大型小球藻大规模培养的主要研究方向。
溶解的O 2降低对浮游植物生理学的阳性或负面影响取决于光暴露的持续时间。为了揭示潜在的机制,海洋模型硅藻thalassira pseudonana在三个溶解的O 2水平(8.0 mg l -1,环境O 2; 4.0 mg L -1,Low O 2;和1.3 mg L -1,低氧)中进行培养,以比较其生长,蜂窝池组成和黑暗的生长,和物理学和黑暗周期。结果表明,环境O 2下的生长速率为0.60±0.02天-1,是光周期内生长速率的一半,在黑暗时期内增长率为15倍。降低O 2在光周期增加了生长速率,但在黑暗时期降低了它,并在光和黑暗时期都降低了细胞色素含量。在光中,低O 2增加了细胞碳(C)的含量,而缺氧则降低了它,而在黑暗中的增加和降低的程度更大。低O 2对细胞氮(N)含量没有显着影响,但缺氧降低了。低O 2对光合效率没有显着影响,但降低了黑暗呼吸率。在黑暗中,低O 2对细胞C损耗率没有显着影响,但n损耗率降低,导致POC/POC比率增加。此外,缺氧加剧了细胞死亡率和下沉,这表明硅藻衍生的碳埋葬可能会由于未来的海洋脱氧而加速。