尽管长期以来,基于强度的荧光光谱研究已经很普遍,但通过脉冲激发从分子中传达了其他时间信息,并且时间分辨的检测是一种相对较新且功能更强大的技术。时间分析可以揭示仅光谱数据就无法获得的有关发射极的信息。这就是为什么通过时间相关的单光子计数(TCSPC)对荧光进行时间分解(通常是激光引起的)的原因。适当的荧光染料的荧光衰减时间的差异提供了强大的歧视特征,以区分感兴趣的分子与背景或其他物种。这使得该技术非常有趣,甚至可以降低到单分子水平。
MPPC是一种称为SIPM(硅光层流)的设备。这是一种新型的光子计数设备,由多个Geiger模式APD(Avalanche Photodiode)像素组成。这是一种具有出色的光子计数能力和低工作电压的光轴导导器,并且不受磁场的影响。S13360系列是用于精确度量的MPPC。MPPC继承了先前产品的出色低浮肿特性,并进一步提供了较低的串扰和较低的深度计数。它们适合精确测量,例如流式细胞仪,DNA测序仪,激光显微镜和荧光测量,需要低噪声特征。
目标:骨骼微结构的详细可视化对于评估计算机断层扫描(CT)中的腕骨骨折至关重要。本研究旨在与第三代二代双源CT扫描仪(EID-CT)相比,使用基于尿尿酸的临床摄氏光子计数检测器(PCD-CT)来评估CT系统的成像性能(PCD-CT)。材料和方法:两个CT系统均用于检查具有辐射剂量等效扫描方案的8个尸体手腕(低/标准/全剂量成像:CTDI VOL = 1.50/5.80/8.67 MGY)。所有手腕都用2种不同的光子计数CT(标准分辨率和超高分辨率)的操作模式进行扫描。使用可比的重建参数和卷积内核进行重新格式化后,3位放射科医生以7分制对图像质量进行了主观评估。为了估计间的可靠性,我们报告了类内相关系数(绝对一致,2向随机效应模型)。信噪比和对比度与噪声比率,以提供对图像质量的半定量评估。结果:与在标准分辨率模式下的全剂量PCD-CT相比,在超高分辨率模式下进行标准剂量PCD-CT检查的主观图像质量优越(P = 0.016)和全剂量EID-CT(P = 0.040)。在超高分辨率模式下低剂量PCD-CT和标准剂量扫描之间在标准分辨率模式下(P = 0.108)或EID-CT(p = 0.470)之间确定了差异。标准分辨率PCD-CT和EID-CT的观察者评估在全剂量和标准剂量扫描中提供了相似的结果(P = 0.248/0.509)。类内相关系数为0.876(95%置信区间,0.744 - 0.925; p <0.001),表明可靠性良好。(所有P's <0.001)。(所有P's <0.001)。
Piera IPS是一种基于读数的光子计数高度敏感的光电颗粒传感器。利用Piera的PCIC作为核心处理器,IPS紧凑,可以消耗低功率,同时可以快速获取和读数,并根据大小对微粒进行分类。IPS具有针对各种应用程序的可调节灵敏度控制。使用最先进的独特尺寸和计数算法来识别不同的颗粒,IPS适用于真正的实时精确空气寄生物质物质监测和粒度分布分析。通过Piera自动校准(Pascal)系统,将每个IPS校准为EPA批准的FEM参考仪器Grimm EDM180。可以在此处找到指定的参考和等效方法的列表,pg。68。
由于全球生产的增加,摘要质量保证和过程控制正在成为电动汽车(EV)电池生产的越来越重要的方面。在由电动汽车电池引起的车辆火灾之后,人们对质量保证的需求不断上升。此外,能够通过监视生产过程来快速提高新生产线的产量是抵消新电池工厂成本的重要方面。高速X射线CT的检查是提高质量保证的一种方法,例如通过阳极/阴极悬垂检查,但还分析了完整的电池单元,以进行连续过程控制。在这里,我们通过利用MetalJet X射线源与高性能光子计数检测器相结合,可以显示在棱柱形和圆柱电动电动机电池电池中可以实现CT扫描的速度。
我们提出了一种光子计数检测系统方案,通过抑制探测器死区的影响,该系统可以在比其他方式更高的入射光子速率下运行。该方法使用 N 个探测器阵列和一个 1×N 光开关,并带有控制电路将输入光引导到实时探测器。我们的计算和模型突出了该技术的优势。具体来说,使用这种方案,一组 N 个探测器可提高运行速率,这种提高可以超过单个探测器死区时间减少 1/ N 所获得的改进,即使可以生产出死区时间改进如此大的单个探测器也是如此。我们为连续和脉冲光源建立了系统模型,这两种光源对于量子计量和量子密钥分发应用都很重要。
我们开发了干涉光谱装置中纠缠光子对引起的时间分辨光子计数信号的封闭表达式。推导出刘维尔空间中的超算子表达式,可以解释耦合到浴槽引起的弛豫和失相。干涉装置将物质和光变量非平凡地混合,这使它们的解释变得复杂。我们为该装置提供了一个直观的模块化框架,以简化其描述。基于检测阶段和光物质相互作用过程的分离,我们表明对纠缠时间和干涉时间变量控制着观察到的物理时间尺度。在纠缠时间较小的极限情况下,只有少数过程对样品响应有贡献,并且可以挑出特定的贡献。
在过去的二十年中,Medipix 已建立了四个连续的合作项目。这些合作旨在利用从高能物理学进步中获得的知识来开发尖端的混合像素探测器,从而能够精确探测每个事件中的单个 X 射线光子或粒子[1]。这些技术在多个科学领域有广泛的应用,包括医学成像、同步加速器 X 射线相机、基于 X 射线的材料分析、电子显微镜等。首先,Medipix1 芯片演示了在 170 µ m 像素间距内单光子计数架构的原理,并展示了通过使用脉冲处理前端在将检测阈值设置在远高于背景噪声水平的情况下实现无噪声 X 射线成像的可行性[2]。Medipix2 通过使用每像素双阈值证明了在 55 µ m 紧凑像素间距下进行光谱成像的可行性[3]。然而,由于电荷收集过程中的扩散以及高 Z 材料中的荧光光子,像素尺寸的减小导致像素间出现严重的电荷共享 [4,5]。随着 Medipix3RX 的推出,读出电子器件从单光子计数转变为单光子处理架构。一种直接在 55 µ m 像素上实施像素间算法的新方案消除了电荷扩散产生的能谱畸变 [6,7]。Medipix3RX 还引入了将 4 个像素中的 1 个连接到像素间距为 110 µ m 的传感器的选项。尽管如此,Medipix3RX 探测器只能在三侧邻接,因为芯片的一侧保留用于控制逻辑和 I/O。这使连续大面积探测器的实现变得复杂。本文介绍的 Medipix4 延续了 Timepix4 芯片的进步,使专用集成电路 (ASIC) 能够沿四侧覆盖,同时将死区降至最低 [8]。医学 X 射线计算机断层扫描 (CT) 和 X 射线成像的另一个限制因素是脉冲堆积,这是由于
另一种策略是使用时间分辨 NIRS (trNIRS) 来增强测量的深度灵敏度,该方法使用皮秒光脉冲和快速探测器来记录漫反射光子的飞行时间 (DTOF) 分布。9 由于 DTOF 包含时间和强度信息,因此可以分辨不同深度的吸收变化,因为光子到达时间与路径长度成正比。最流行的深度增强方法基于计算 DTOF 的统计矩 10、11 或在时间窗口/门内积分光子计数。12、13 在这两种情况下,目标都是关注晚到达的光子,因为它们最有可能探测到大脑。先前使用分层组织模拟幻影、动物模型和人类受试者的研究表明,与传统的 CW NIRS 相比,trNIRS 对脑血流动力学具有更高的灵敏度。13 – 17
量子假设检验的最终目标是在所有可能的经典策略中实现量子优势。在量子读取方案中,这是从光学内存中获取信息的,其通用单元在两个可能的有损通道中存储了一些信息。我们在理论上和实验上表明,通过实用的光子计数测量结果与模拟最大样本决策相结合,可以获得量子优势。特别是,我们表明该接收器与纠缠的两种模式挤压真空源相结合,能够以相同的平均输入光子数量相干状态的统计混合物胜过任何策略。我们的实验发现表明,量子和简单的光学器件能够增强数字数据的读数,为量子读数的真实应用铺平了道路,并使用基于波斯克尼克损失的二元歧视的任何其他模型进行了潜在应用。