数学物理学 2 12MATHP502 原子核 2 12PHEPN502 天体物理学 2 12PHAST502 低温物理学 1 12PHCMP502 量子传输物理学 2 12PHAPP504 光学特性 2 12PHOPT502 超导量子物理学 1 12PHQUI502 行星与空间物理学 2 12PHGEO504 生物物理学 2 12PHBCS502
和e de。(在图中d(e)de = g(e)de中)上图表明,当我们从0D移动到3D时,能级将变得离散。量子态的数量在确定诸如半导体之类的材料的光学特性中变得很重要(即碳纳米管或量子点)。
量子材料具有优异的光学特性。它们可用于显示器、传感器、辐射探测器以及生物成像和离子检测。量子材料的光学特性会根据其尺寸而改变。因此,单分散量子材料的合成是一个主要目标。多年前,微流体反应器已被证明是一种有效的工具,可用于生产纳米级功能材料,并合成具有可控形态和定制特性的纳米材料。因此,本综述重点介绍量子材料微流体制造的最新进展和前景。本文通过实例展示了如何制造量子材料,包括半导体纳米晶体、碳量子点、金属纳米粒子(尤其是金属簇)、稀土掺杂纳米磷光体和荧光氧化物,以及如何控制它们的质量和性能。本综述旨在为对量子材料合成和大规模生产领域感兴趣的科学和行业研究小组提供指导。
近年来,人们对塔姆等离子体极化激元 (TPP) 的兴趣日益浓厚,TPP 是位于一维光子晶体 (PhC) 和金属薄膜界面处的光态 [1-10]。通过将液晶引入金属光子晶体结构,可以控制 TPP 的波长和 Q 因子 [11],从而可以通过同时改变电场和温度来控制系统的光学特性。然而,基于这种方法的装置相对较慢,因为液晶的响应时间至少为一毫秒。一种有前途的替代方案是相变材料,例如 VO2 [12-14]、GeSbTe (GST) [15-17] 和 Sb2S3 [18-20]。这些材料的光学特性在特定温度下会急剧变化,从而可以快速调制系统的光学响应。在这种情况下,切换发生在一微秒内,比基于液晶的结构快三个数量级。VO 2 的优势在于 68 C o 的低相变温度。然而,与 GST 一样,VO 2 具有高消光系数,这使其难以用于纳米光子器件。
正在进行的研究涉及合成聚合物材料中的纳米复合材料,并研究其线性,非线性,结构和形式的光学特性,用于在非线性光学领域的应用。在聚合物材料中添加纳米复合材料可以增强和改善许多特性,从而适合广泛的应用。在非线性光学元件(NLO)及其各种应用的领域,添加纳米复合材料制造的利用主要是由于其显着的非线性响应和广泛的光谱透明度。使用化学方法合成了三种纳米复合材料,即Ag 2 Se+PVA,AG 2 SE+PMMA和AG 2 SE+PEO。使用XRD,FESEM,EDX,FTIR,RSS和PL技术进行这些化合物的表征。使用添加不同的聚合物,使用不同浓度的所有产生样品的线性光学特性来研究所有产生的样品的线性光学特性。发现表明在相同波长下浓度增加和更高的吸光度之间存在正相关。此外,与前面的两种化合物相比,AG 2 SE+PVA化合物的吸收更大。量化了所有生成的样品的荧光,发现结果表明浓度和荧光之间存在反比关系,从而增加浓度导致荧光下降。在两种情况下使用Z-Scan技术的非线性计算:开放孔径和闭合光圈。这是为了确定非线性折射率(N2)和非线性吸收系数(β)的值。Ag 2 SE+PVA化合物表现出优异的非线性行为。使用固态泵二极管激光器进行测试,波长为405 nm,功率输出为2.94 mW。
摘要:由于薄膜内激发光和拉曼散射光的干扰,薄膜多层膜的拉曼信号强度随薄膜层厚度非单调变化。这一现象不仅可用于增强拉曼信号,还可用于研究薄膜厚度和光学特性。本文,我们对几种薄膜材料系统的拉曼信号厚度依赖性进行了实验研究,包括蓝宝石上硅 (SOS) 和 SOS 上的氮化硅薄膜,以及在硅基板上制备的多层 MoS 2。将适当缩放的测得强度与从传输矩阵法开发的分析模型进行比较。当激光光斑尺寸足够大于薄膜厚度时,SOS 薄膜具有很好的拟合效果。对于多层 MoS 2,发现来自底层 Si 基板的拉曼信号强度具有极好的拟合效果,而 MoS 2 特征拉曼位移的强度受激光参数和样品方向的影响。这些结果对薄膜计量和光学特性表征具有重要意义。
快速发展的现代光通信系统需要小型电光器件,其光学特性需要能够大幅度快速变化。这种纳米级器件可以用作数据存储或片上数据链路的光互连。[1] 在过去的几十年中,基于量子阱结构的电吸收 (EA) 调制器已被提出在高速光网络中发挥特别有前景的作用。[2,3] 利用量子限制斯塔克效应 (QCSE),这些材料的光学特性可以通过沿限制轴的外部电场进行调制,即通过倾斜势阱。由于这种“倾斜”的价带和导带,相关的最低能量电子和空穴波函数将定位在势阱的相对侧,从而导致带隙附近的吸收光谱发生变化。这种场诱导调制的典型特征是波函数之间的重叠积分降低,相关光学跃迁的振荡器强度降低,以及跃迁能量降低,这表现为吸收带边缘红移。[4–6]
光学活性材料中的可调发射是从光电子到生物医学的广泛应用的理想特征。1–4由于其结构和电子适当,P-偶联的发色团是用于制备光学特性功能材料的理想基础。5,6通过利用P-曲面之间的超分子相互作用,分子排列和骨料形态可以精确地以微观量表进行控制。7然而,在发射色团的堆叠结构中经常观察到荧光的剧烈淬火,从而限制了光学性能。有机构件的正确分子设计为制备发光组件提供了有效的策略。最近,这种现象通常被称为聚集诱导的发射(AIE),但已知更长的时间。8,9在这些情况下,发射是由于非辐射停用途径的抑制而导致的,该途径通过骨架状态的分子内旋转或振动模式的限制,其二苯苯基甲基(TPE)是原型典型的例子。10这些发射材料的光学特性使它们有趣
摘要本研究使用电化学方法研究石墨烯量子点(GQD)的光学特性的合成和分析,以研究光电和生物成像技术中潜在的应用。GQDS是一种纳米材料,其量子大小由于独特的光学特性而显示出巨大的电子和光电应用潜力。之所以选择电化学方法,是因为其能够生产具有均匀尺寸分布的GQD。使用2B铅笔杆作为NaOH电解质溶液中的电极和在电压的效果下进行柠檬酸进行合成过程。柠檬酸浓度的变化用于评估其对产生GQD的光学特性的影响。使用UV-VIS光谱,光致发光(PL)和时间分辨光致发光(TRPL)进行表征。UV-VIS表征的结果表明,在212 nm至250 nm的波长下,吸收峰,表明GQD形成的成功,以及随着柠檬酸浓度的增加,吸收强度的增加。pL频谱显示出强度差异的强光发射,但对于每种浓度变化而言,排放的峰值几乎相同。TRPL分析表明,发光的寿命不受柠檬酸浓度的变化影响,所有样品均表明衰减时间均匀。关键字:石墨烯量子点,电化学,光学特性,UV-VIS,光致微照射,时间分辨的光致发光。这项研究的结果表明,电化学方法可以产生具有所需的光学特性和良好控制纳米材料的光学特性的GQD。This study provides an important insight into the control of GQDS optical properties through variations in the concentration of precursors, which has the potential to applications in the fields of optoelectronics and bioimaging, as well as making an important contribution to the understanding of GQDS optical properties and further development of this nanomaterial -based application.
二维(2D)过渡金属二分法(TMD)的内在特性受其界面条件的深刻影响。工程TMD/底物接口对于在设备应用中利用2D TMD的唯一光电特性至关重要。这项研究深入研究了单层(ML)MOS 2的瞬态光学特性如何受底物和膜制备过程的影响,特别是集中在光激发载体的产生和重组途径上。我们的实验和理论分析表明,转移过程中诱导的应变和缺陷在塑造这些光学特性中起关键作用。通过飞秒瞬态吸收测量值,我们发现了ML MOS 2中载体捕获过程的底物改变的影响。此外,我们研究了激子 - 外激体歼灭(EEA),表明EEA速率随不同的底物而变化,并且在低温(77 K)时会显着降低。这项研究为通过战略接口工程定制TMD的光电特性铺平了道路,有可能导致创建高效的电子设备,例如光电记忆,光发射二极管和光电探测器。