由于胶片摄像头被替换为数码相机,因此追求小像素大小进入亚微米尺度以满足高分辨率成像的需求是一个主要趋势。1,2图像传感器的像素大小的收缩(ISS)引发了严重的信噪问题,并带来了常规光学组件的挑战。3最近通过应用各种纳米光学效应,包括超普通变速器(EOT),4个金属纳米antennans,5 Fano共振,6个MIE共振,7和指导模式共振(GMR)来设计结构性色过滤器。8与基于材料吸收的常规染料颜色过滤器相比,结构颜色技术通过人工微/纳米结构实现光谱滤波,具有互补金属的优势 - 氧化物 - 氧化物 - 轴导剂(CMOS)过程兼容性,稳定性,稳定性和抑制空间颜色crosstalk。9尽管已经进行了彻底的研究以探索基本物理学,但10种高质量的材料11并优化了结构色技术的制造和集成方法12,但没有一个可以在光传输效率(〜90%)和颜色纯度方面击败染料色过滤器。13此外,大多数结构颜色过滤器都是
(2024年8月20日,香港)阳光光学技术(集团)公司有限公司(“公司”,以及其子公司“集团”)(股票代码:2382.hk),这是全球领先的集成光学组件和产品生产商,今天宣布了6月30日2024年6月30日在2024年上半年,全球汽车市场表现出稳定的增长,并广泛采用了新的能源车辆和智能汽车技术,这些技术是主要的驱动力。在此背景下,车辆摄像头市场已经看到了巨大的开发机会。利用多年的深入专业知识和杰出技术,该集团车辆镜头的市场份额维持全球号1位置,尽管激烈的竞争激烈,但仍保持不错的毛利率,展现了强大的竞争力和持久的市场领导力。随着驾驶自动化的水平,市场对感知硬件的性能和数量提出了更高的需求,例如车辆镜头套件和激光镜头,从而进一步扩展了光学产品应用程序的应用。因此,与去年同期相比,截至2024年6月30日的六个月截至2024年6月30日,该集团车辆镜头组的发货量增加了约13.1%,而Lidar和Hud等新兴的光学产品也获得了几个指定项目,并获得了与车辆相关产品的连续多样化。
摘要X射线光学的科学和技术已经走了很远,从而使X射线专注于高分辨率X射线光谱,成像和辐照。尽管如此,在X射线制度中,许多形式的裁缝波对光学状态的应用产生了重大影响。从根本上讲,这种差异源于所有材料在高频上接近统一的折射率的趋势,这使得X射线光分量(例如镜片)和镜像更难创建,并且通常效率更低。在这里,我们提出了一个新概念,用于X射线聚焦,基于将弯曲的波前诱导到X射线生成过程中,从而导致X射线波的内在聚焦。这个概念可以看作是有效地将光学元件整合为发射机制的一部分,从而绕过X射线光学组件施加的效率限制,从而实现了具有纳米级焦点斑点大小和微米尺度的纳米镜的创建。特别是,我们通过设计由自由电子驱动时会塑造X射线的大约VDW异质结构来实现此概念。聚焦热点的参数,例如侧向尺寸和焦点深度,是层间间距chirp和电子能量的函数。期待,创建多层VDW异质结构的持续进展开放了X射线纳米梁的焦点和任意形状的前所未有的视野。
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用
使用基于两种或多光子吸收的聚合物光蛋白师使用高功率PICO-PICO或飞秒激光器,使用聚合物光孔师使用聚合物光孔师和纳米蛋白酶,从而导致相当大且昂贵的仪器。最近,我们基于两步吸收而不是两步的光子吸收,而不是两次光子的吸收,从而允许使用小型且廉价的连续波405 nm波长GAN GAN GAN半导体激光二极管激光二极管,其光输出功率低于1 MW。在此使用相同的光孔系统和相似的激光二极管,我们报告了适合鞋盒的3D激光纳米螺旋体的设计,构造和表征。这个鞋盒包含所有光学组件,即安装激光器,准直和横梁成型光学元件,微型mems xy-scanner,tube镜头,聚焦显微镜物镜,na = 1.4,100 x放大倍率),一个piezo slips-splip s-split z-spectiatiation sminiation sminitiation sminiatiation sminiatiatiatiatiatiatiatiatiatiatiatival smimiatiate smination Sypame sypamer sypamer sypamer sypame sypame sypamer nimul sminiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatival。采用微控制器的电子设备。我们提出了用该仪器打印的示例3D结构的画廊。我们达到了约100 nm的横向空间分辨率,重点扫描速度约为1 mm/s。可能,我们的鞋盒大小的系统可以比今天的商业系统便宜。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
集成的光子学促进了可扩展,节能的高性能设备的开发,并通过将各种被动和主动的光学组件集成到单个平台上,具有小脚印。这可以改善用于数据通信,传感,成像和量子信息处理的光学系统的性能和稳定性。由这些应用驱动,绝缘子(LNOI)上的薄膜锂(TFLN) / Niobate上的硅锂由于其高的非线性和电磁性能而成为强大的材料平台[1]。薄膜锂锂波导的高模态限制允许具有小弯曲半径的紧凑装置[2]。LNOI是有效的非线性设备[2-6]和快速电磁调节器[7 - 12]的合适候选者。低损坏波导通道可以预期与未来的高性能光子设备高度相关。,非结构化的薄膜材料具有内在的损失(0.2 dB / m [13]),它们远高于大量氯硝基锂的水平,这可能是由于制造过程中造成的离子植入损伤的结果[13]。由这些薄膜板制成的结构化通道表现出更高的衰减,主要是由粗糙的侧壁引起的。为了减轻这种效果,可以用诸如SIO 2之类的材料来覆盖该设备,以减少折射率对比度,可以通过调整制造过程来降低粗糙度,或者可以通过接受多模型的多模式spaveguide Geometries来减少光学模式的重叠[14]。使用这些方法在2023年已证明了1550 nm左右的最低传播损失1 dB / m [15]。低损失被认为是量子光学[16],单个光子处理[17]或光学量子计算[18]的情况下特别是必不可少的。理解这些系统的局限性至关重要,因此,对建模的技术也很重要,在这些领域中很重要。在影响综合光子电路功能的各种损失来源之间
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
1。引入量子信号的独特特征,例如插入和叠加,使它们非常容易受到环境干扰的影响。因此,量子应用的成功取决于单光子的传输和操纵的可靠性。超低损耗光纤连接器在这种情况下起着关键作用,是量子设备之间的关键联系。标准连接器可能会引入重大损失,从而损害了量子通信的保真度。超低损耗连接器通过最大程度地减少信号降低并保持量子状态的完整性来应对这一挑战。2。量子光子量子应用中的光纤连接器需要组合精确的,耐用性和高性能在非常专业的条件下可靠地发挥功能。钻石的E-2000®和MiniAvim®连接器即使受到挑战性的环境因素,也是由于其出色的光学性能,鲁棒性和适应性的原因而脱颖而出。e-2000®特别以其集成的快门机械性而闻名,该机构可保护纤维末端面部免受污染和损害,从而确保随着时间的推移一致的性能。另一方面,MiniAvim®由于其紧凑,轻巧的设计与坚固的可靠性相结合而受到重视,使其成为挑战性环境条件(例如极端温度和振动)的首选连接器。3。在所有制造和组装过程中,必须测量这些参数并控制在控制之下。此外,Diamond的真空进料提供了在超高真空(UHV)和低温条件下运行的量子系统的关键界面解决方案。旨在实现跨真空屏障的预先和有效的光线传输,此进料可确保在将光学组件整合到量子环境中时,可确保最小的信号损失和最佳性能。Diamond的先进技术和工程确保这些解决方案满足量子研发的严格要求,提供无与伦比的可靠性和光学精确度。插入损失的原因只能通过控制多个参数,例如: - 套圈特性:直径,形式和精度孔直径和同心性来保证连接器的光学性能; - 抛光参数; - 端面瑕疵(划痕,凹坑和污染); - 纤维核的侧面和角度未对准。横向未对准是单模连接器中插入损失的最重要贡献者。纤维制造商通常会指出最大的核心对偏心。0.5微米和±1微米内的覆层直径精度。