摘要 哺乳动物的智能行为和认知功能依赖于由多种兴奋性和抑制性细胞组成的皮质微电路,这些微电路形成跨越六层的森林状复合体。对皮质微电路的机制理解需要操纵和监测多个层及其之间的相互作用。然而,现有技术仅限于同时监测和刺激不同深度而不损害大量皮质组织。在这里,我们提出了一种相对简单且通用的方法,用于同时将光传送到任意两个皮质层。该方法使用一个微型光学探头,该探头由安装在单个轴上的两个微棱镜组成。我们通过三组实验展示了探头的多功能性:第一,通过光遗传学独立操纵两个不同的皮质层;第二,刺激一层同时监测另一层的活动;第三,在清醒小鼠中同时监测分布在两个不同皮质层中的丘脑轴突的活动。该探针设计简单、用途广泛、体积小、成本低,可广泛应用于解决重要的生物学问题。
是物联网的“眼睛”和“耳朵”,光学传感器和声学传感器是硬件系统中的基本组合。如今,主流硬件系统通常包含众多离散的传感器,转换模块和处理单元,往往会导致与人类感觉途径相比,相比之下,复杂的体系结构效率较低。在这里,提出了一种受人感知系统启发的视觉原告光电探测器,以启用具有计算能力的多合一视觉和声学信号检测。此范围不仅捕获了光,还可以光学记录声波,从而在单个单元中实现“观看”和“聆听”。栅极可调阳性,负和零光呼应会导致高度可编程的疾病。此可编程性可以执行各种函数,包括视觉特征推断,对象分类和声波操纵。这些结果展示了在神经形态设备中扩展受访方法的潜力,从而开辟了新的可能性来制作智能和紧凑的硬件系统。
电子与电气工程实验室 电子与电气工程实验室 (EEEL) 的研究项目涵盖了电气、电子、电磁和光电材料、组件、仪器和系统的几乎所有关键学科,并侧重于计量学。实验室在马里兰州盖瑟斯堡和科罗拉多州博尔德设有实验室;其年度预算约为 8000 万美元。EEEL 的项目涵盖以下领域的测量和相关研究:(1) 基本电气单元;(2) 超导电子学和约瑟夫森结器件、量子霍尔效应器件和单电子隧穿现象的应用;(3) 高临界温度和低临界温度超导体、器件和系统;(4) 磁性材料、块体和薄膜,包括记录介质和磁头;(5) 硅和复合半导体材料、工艺和器件,包括功率器件;(6) 用于纳米级制造控制的测试结构; (7) 光电子学,包括光波通信和传感技术、激光器和光学记录;(8) 微波和毫米波材料、仪器、系统和天线,包括单片微波/毫米波集成电路;(9) 电磁兼容性和干扰,包括辐射和传导,包括电能质量;(10) 射频和微波/毫米波噪声;(11) 电介质材料
借助光,人们可以找到耗散最小的机制来影响磁化。[1] 在这方面,亚铁磁材料迄今为止对超快激光激发表现出最显著的响应,首先是用单个 40 飞秒激光脉冲观察到金属亚铁磁合金 GdFeCo 中的磁化转换。[2] 已证明该机制是通过激光诱导加热后的强非平衡瞬态铁磁相 [3] 进行的。[4] 后来,通过光诱导磁各向异性变化,在介电亚铁磁体中实现了磁位的非热光学记录机制。[5] 最近,人们发现这种亚铁磁性电介质还能实现一种新颖的热辅助磁记录 (HAMR) 机制,[6,7] 它不需要像 GdFeCo 那样几乎完全退磁,而是依赖于磁各向异性的温度依赖性。 [8] 这就提出了一个问题:磁各向异性的超快变化是否也会在金属亚铁磁体中发挥作用。然而,尽管人们对金属亚铁磁体的研究兴趣浓厚,但尚未讨论磁各向异性超快动力学导致的磁化动力学和最终的磁切换。在这里,为了研究磁各向异性的温度依赖性在金属亚铁磁体的激光诱导磁化动力学中的作用,我们考虑了亚铁磁 Gd/FeCo 多层。在过去的几年中,人们研究了激光诱导的稀土过渡金属 (RE-TM) 多层异质结构现象,并将其与合金进行了比较,主要关注全光切换。 [9–13] 在这方面,多层膜与合金相比最大的区别在于,由于 RE-TM 接触面积减小,且被限制在界面上,因此稀土和过渡金属自旋之间的有效反铁磁交换相互作用较弱。一个较少暴露的方面是结构各向异性对磁各向异性的影响,这种影响是由各向同性合金的层状排列引起的。也就是说,当界面处的对称性被破坏时,结构可以获得对磁各向异性的额外和可控贡献。[14,15] 通过对磁场和泵浦通量进行泵浦探测磁光测量,我们发现我们的多层膜中的激光诱导动力学与已知的
化学感应培训师的描述:伊丽莎白·布朗(Elizabeth Brown,Ph.D.我们结合了行为,功能成像和分子遗传技术的组合来研究动物可以区分这些不同味道方式以及如何受到衰老和神经退行性疾病的影响的机制。Adam Dewan博士,心理学和神经科学助理教授,我的研究重点是感觉感知的分子和细胞基础。我们使用遗传,光遗传学,钙成像和行为技术的组合来探讨嗅觉如何在大脑内映射和编码。Lisa Eckel博士,心理学和神经科学教授,我的研究探讨了感觉,内分泌和内分泌和内源性大麻素系统在控制发明行为中的作用,以更好地了解这些系统的失调可能如何促进与饮食相关的疾病,包括饮食中的疾病,包括厌食性厌食症,狂热,暴饮暴食和肥胖。div> Debra Ann Fadool博士,杰出的生物科学,神经科学和分子生物物理学的杰出研究教授,我的研究探索了由离子渠道,内分泌途径和神经调节剂进行调节信号传导,这些信号传导,这些途径和神经调节剂控制嗅觉编码,异常检测和能量稳态的植入液位,以理解糖尿病的水平,以了解Olfact的Dyys Dys Ford Ford Fards Dysf。肥胖。伊丽莎白·汉莫克(Elizabeth Hammock)博士,心理学和神经科学副教授对照料者的依恋是哺乳动物脑发育的重要组成部分。我们目前的假设是嗅球充当了调节能量稳态的代谢传感器。我们将其活性定为减轻饮食引起的肥胖症的有害影响的一种手段。我的研究使用小鼠模型来探索基于电路依赖性婴儿附着的基于电路的机制。汤姆·霍普(Tom Houpt)博士,生物科学和神经科学动物教授非常擅长学习,味道和口味可以预测营养食品,并预测避免有毒食物。i研究了条件味觉厌恶和风味偏好模型中食物学习的分子机制。Alan C. Spector,Ph.D.,杰出的心理学和神经科学研究教授,我们使用行为程序,再加上周围和中央阵风系统的实验操作,以研究大脑中味觉处理的功能组织。DOUGLAS Storace博士,尽管嗅球是嗅觉信息处理的第一阶段,但生物科学和神经科学助理教授,尽管它是与感知和学习有关的复杂功能的令人惊讶的复杂功能。我的研究通过测量如何通过灯泡加工来转化嗅觉的感觉输入并传播到较高的大脑区域,调查了灯泡在这些高级神经计算中的确切作用。Roberto Vincis,Ph.D.,生物科学和神经科学助理教授我的研究研究了皮质和丘脑味性大脑区域如何整合感觉和认知味觉相关的信息以及它们如何影响喂养行为。我们结合了多站点电生理记录和光学记录,用于数据分析的定量方法,与行为训练一起对大脑区域的药理和/或光遗传学操纵。