新颖的X射线成像可能很复杂。为了设置扫描,用户需要为视野,投影数量等定义参数。通常,新手和专家用户都必须在研究实验室或成像设施中的3D X射线显微镜(XRM)上申请仪器时间,这使得需要有效地工作,以尽可能快地获得最佳的结果。
在量子光学领域,精确表征各种噪声源(例如散粒噪声、电噪声和真空噪声)对于推进光学测量技术和量子信息系统至关重要。本研究介绍了一种使用同差检测将光强度波动转换为电压信号的实验方法。然后借助示波器或频谱分析仪分析这些信号,以剖析噪声的时间和频谱特性。这些工具的集成使我们能够详细观察和区分量子噪声,从而提供对提高光学系统的准确性和效率至关重要的见解。该项目主要基于两部分:光学和电子学,我们成功完成了光学部分,而电气部分有待未来研究。这些发现为改进量子噪声表征奠定了基础,促进了下一代光学和量子信息技术的发展。
激光安全简介 激光已成为医学、物理学、化学、地质学、生物学和工程学领域日益重要的研究工具。如果使用或控制不当,激光会对操作员和其他人员(包括未经授权的实验室访客)造成伤害(包括烧伤、失明或触电),并造成重大财产损失。所有激光的个人用户都必须接受充分培训,以确保充分了解德克萨斯大学激光安全政策中概述的安全实践。大学的激光安全程序遵循德克萨斯州卫生部辐射控制局的要求以及美国国家标准协会 (ANSI) 的指导方针,如 ANSI 标准 Z136.1“激光的安全使用”中所述。什么是激光? LASER 是受激辐射光放大的首字母缩写词。激光产生的能量位于电磁波谱的光学部分或附近。能量通过称为受激辐射的原子过程放大到极高的强度。 “辐射”一词常常被误解,因为该术语也用于描述放射性物质或电离辐射。但在本语境中,该词的使用是指能量转移。能量通过传导、对流和辐射从一个位置移动到另一个位置。激光的颜色通常用激光的波长来表示。表示激光波长的最常用单位是纳米 (nm)。一米有 10 亿纳米 (1 nm = 1 X 10 -9 m)。激光是非电离光,包括紫外线 (100-400nm)、可见光 (400-700nm) 和红外线 (700nm-1mm)。电磁波谱每种电磁波都表现出独特的频率,以及与该频率相关的波长。正如红光有自己独特的频率和波长一样,其他所有颜色的光也都有独特的频率和波长。橙色、黄色、绿色和蓝色各自表现出独特的频率和波长。虽然我们可以用相应的颜色感知这些电磁波,但我们看不到电磁波谱的其余部分。大部分电磁波谱是不可见的,并且其频率遍布整个频谱。频率最高的是伽马射线、X 射线和紫外线。红外辐射、微波和无线电波占据频谱的较低频率。可见光介于两者之间,处于非常狭窄的范围内。
这些是我在上海交通大学致远学院教授的一门课程的讲义(可在 www.youtube.com/derekkorg 上找到),尽管第一稿是为我在德国埃尔朗根-纽伦堡大学教授的上一门课程而写的。它是为只接受过量子力学基础培训的学生设计的,因此,该课程适合各个层次的人(例如,从本科毕业一直到博士阶段)。这些笔记还在进行中,这意味着一些证明和许多图表仍然缺失。然而,我已尽我所能,以这样一种方式编写所有内容,即使有这些缺失的部分,读者也可以自然地理解所有的论证和推导。另外,还剩下几章需要添加,其中一章是关于分析开放系统动力学的数学方法,另一章介绍了目前大量实验平台,这些笔记中开发的工具和想法目前正在这些平台上实施。首先,我先说几句关于讲座主题的话。量子光学研究光与物质之间的相互作用。我们可以将光视为电磁波谱的光学部分,将物质视为原子。然而,现代量子光学涵盖了各种各样的系统,因此更及时的定义可能是“低能量子电动力学”。这种情况包括,例如,超导电路、受限电子、半导体中的激子、固态缺陷或微观、中观和宏观系统的质心运动。此外,量子光学是呈指数级增长的量子信息处理和通信领域的核心,无论是在概念层面还是在技术实现层面。量子光学中发展起来的思想和实验也让我们能够重新审视与凝聚态物理甚至高能物理相关的多体问题。此外,量子光学有望在桌面实验中检验量子力学以及标准模型以外的物理学的基本问题。量子光学的显著特点之一是它处理的是非孤立系统,即它们会向周围环境泄漏能量和信息。虽然这实际上是真实物理系统中最常见的情况,但这并不是学生在标准量子力学课程中通常遇到的情况。本课程的很大一部分致力于填补这一空白:它介绍了许多用于描述开放量子光学系统的工具和方法。除了实际用途之外,这些方法还具有深刻的物理解释,使学生更好地理解量子力学。因此,量子光学和开放系统是未来量子物理学研究人员不容错过的课题。我必须强调,为了成长为一名优秀的量子物理学家,尽可能多地阅读这些主题的资料非常重要。因此,我总结了一份参考文献清单,这些参考文献在我职业生涯的不同阶段都非常有用 [ 1 – 21 ]。最后,我要感谢过去几年仔细阅读这些讲义并帮助我完善讲义的许多学生,以及提出改进建议或将其传播给学生的几位同事。
我们推出《生物医学光学快报》光学与大脑专题,该专题将于 2023 年 4 月 24 日至 27 日在加拿大温哥华举行的 Optica 生物光子学大会:生命科学中的光学部分举行。这次会议是讨论现有和新兴技术以及未来方向的论坛,以揭示健康和患病大脑的新亮点。光学提供了一个独特的工具包,用于从微观到宏观尺度对活体和完整大脑进行多尺度成像。同时,基因标记策略为图像神经功能提供了光学对比,而光遗传学允许用光控制细胞功能。为了涵盖实现这些不同目标所需的专业知识,会议汇集了工程师、光学和医学科学家、生物学家、化学家和医生。本期特刊中的文章代表了参与《光学与大脑》的社区的广泛范围。漫射光学器件可以利用近红外光探测人体组织中厘米深处,从而无创地到达活体大脑。一篇评论文章 [ 1 ] 强调了使用近红外光谱 (NIRS) 的非侵入性光学成像方法在成人和新生儿中测量氧化细胞色素-c-氧化酶。另一项使用传统血红蛋白 NIRS 的研究 [ 2 ] 表明,虚拟现实游戏任务可以比简单的抓握动作更好地调节大脑功能网络。这一发现对于中风后手部麻痹患者恢复抓握能力具有重要意义。光学方法还可以阐明脑组织的结构和生化组成。在癌症诊断中,另一项研究 [ 3 ] 调查了激光诱导击穿光谱 (LIBS) 和电火花辅助激光诱导击穿光谱 (SA-LIBS) 在区分胶质母细胞瘤 (GBM) 和少突胶质细胞瘤 (OG) 与非肿瘤浸润脑组织中的应用。作者展示了 SA-LIBS 在区分肿瘤组织以及多参数表征方面的优势。在另一项工作 [ 4 ] 中,展示了一种用于立体定向神经外科无标记成像的双光子微内窥镜。该装置足够小,可以放入手术套管中。另一项工作 [ 5 ] 使用连续切片偏振敏感光学相干断层扫描展示了人类脑组织块中髓鞘的无标记成像
使用MMI Cellcut(一种提供精确的单细胞隔离的高级激光显微解剖(LMD)系统)解锁研究的全部潜力。此功能强大的工具对于精确样本准备至关重要,为您提供了在各个研究领域成功下游实验所需的明确定义的起始材料。样品安装在载玻片和载体膜之间,以确保有效防止污染的无接触式切割过程。体验LMD作为您的基础研究资产的准确性和效率差异。