提出一种具有非互易耦合的双腔光机系统来实现可调的光学非互易性,有望制成用于操控信息处理和通信的光学装置。本文研究了双腔系统的稳态动力学过程和来自相反腔方向的光波传输。详细给出了探测场的透射谱,并分析了诱导透明窗口的物理机制。发现探测场传输的非互易响应出现在两个腔之间的两种不同耦合强度下,从而破坏了空间对称性导致光学非互易传输。此外,通过解析计算,我们给出了非互易效应的条件,并且可以通过调节腔场的耦合强度和耗散率来控制最佳非互易效应。由于该装置简单,本研究可能为实现用于光波传输的非互易结构提供有希望的机会。
信息驱动的波前整形 科学项目描述:光力学研究光与机械运动之间的相互作用。该领域最近取得了重大进展,包括突破光力学相互作用的量子领域,并展示了量子宏观运动状态的制备和检测。这些里程碑的前提是 2010 年初纳米光力学系统的突破,该系统已证明能够利用纳米级的大型光物质相互作用实现超高灵敏度的光力学目的。到目前为止,这些系统的灵敏度极限的处理方法与为宏观对应物开发的方法类似,假设高斯条件和幺正性。然而,这些假设必须用纳米光力学系统进行修改,因为目前纳米光力学系统的操作可能远偏离其灵敏度潜力。事实上,对克拉美-罗界限的理论考虑(该界限定义了参数估计的精度极限)表明,这些系统远未达到最佳性能。这次实习是项目的一部分,该项目旨在利用量子信息理论驱动的波前整形来解决纳米光机械耦合的基本极限。简而言之,我们的实验概念依赖于将一个纳米光机械系统与多模成像设备连接起来,该系统由一个锥形纳米光机械毛细管组成,由强聚焦激光探针照射(见图 1(b)),然后输入信息理论训练的算法(见图 1(a)),从而识别性质并达到基本的运动检测极限。与传统的运动检测方法相比,使用此方法的早期结果已使灵敏度提高了 25 dB 以上(见图 1(c))。
高品质因数 ( Q m ) 机械谐振器对于需要低噪声和长相干时间的应用至关重要,例如镜面悬挂、量子腔光机械装置或纳米机械传感器。材料中的拉伸应变使得能够使用耗散稀释和应变工程技术来提高机械品质因数。这些技术已用于由非晶材料制成的高 Q m 机械谐振器,最近也用于由 InGaP、SiC 和 Si 等晶体材料制成的高 Q m 机械谐振器。表现出显著压电性的应变晶体薄膜扩展了高 Q m 纳米机械谐振器直接利用电子自由度的能力。在这项工作中,我们实现了由拉伸应变 290 nm 厚的 AlN 制成的 Q m 高达 2.9 × 10 7 的纳米机械谐振器。AlN 是一种外延生长的晶体材料,具有强压电性。利用耗散稀释和应变工程实现 Q m × fm 乘积接近 10 13 的纳米机械谐振器
摘要:可见波长超大规模集成 (VLSI) 光子电路有可能在量子信息和传感技术中发挥重要作用。可扩展、高速、低损耗的光子网格电路的实现取决于可靠且精心设计的可见光子元件。本文我们报告了一种基于压电驱动机械悬臂的低压光学移相器,该移相器是在 CMOS 兼容的 200 毫米晶圆可见光子平台上制造的。我们展示了差分操作中 6 V π -cm 的线性相位和幅度调制、-1.5 dB 至 -2 dB 的插入损耗以及 700 nm - 780 nm 范围内高达 40 dB 的对比度。通过调整选定的悬臂参数,我们演示了一个低位移和一个高位移装置,两者均表现出从直流到峰值机械共振的几乎平坦的频率响应,分别在 23 MHz 和 6.8 MHz,通过共振增强 Q~40,进一步将工作电压降低至 0.15 V π -cm。
我们预测了一系列不寻常的量子声学现象,这些现象是由完全可调固态平台中的声音-物质相互作用引起的,在该平台中,金刚石中的一系列固态自旋与一维光机械晶体中的量化声波耦合。我们发现,通过使用在光机械相互作用中引入位置相关相的空间变化激光驱动器,可以原位调整机械能带结构,从而导致非常规的量子声音-物质相互作用。我们表明,当自旋与能带共振时,可以发生准手性声音-物质相互作用,可调范围从双向到准单向。当固态自旋频率位于声学带隙内时,我们证明了一种奇异的极化子束缚态的出现,它可以介导长距离可调、奇邻域和复杂的自旋-自旋相互作用。这项工作扩展了目前对量子声子的探索,可以在量子模拟和量子信息处理中得到广泛的应用。
近年来,非互易物理取得了迅速发展,其独特应用包括不受反向作用影响的信号传输或处理、手性网络和隐形传感[1]。通过破坏洛伦兹互易性,人们已经利用原子[2,3]、固体器件[4–12]和合成材料[13–19]实现了经典信息(即平均光子数)的单向流。同样,也可以实现量子光二极管或量子信息的单向流。事实上,人们已经证明了单光子及其量子涨落的非互易控制,例如单光子二极管[20,21]或循环器[22],以及单向光子阻塞[23,24],这为手性量子工程[25–28]提供了关键工具。然而,到目前为止,在经典和量子区域之间切换单个非互易装置的可能性,以及用非互易装置保护量子纠缠的可能性尚未被揭示。在这里,我们提出了如何在腔光力学(COM)中实现非互易量子纠缠,揭示其在传统设备中无法实现的独特性质。具有相干光运动耦合的 COM 设备 [29,30] 已广泛用于大质量物体的量子控制 [31 – 36],特别是 COM 纠缠 [37 – 45] 或 COM 传感器 [46 – 48]。最近,甚至在光和 40 公斤镜子之间也观察到了室温下的量子关联 [49] 。在这里,我们表明 COM 纠缠可以以高度不对称的方式进行操纵,并且由此产生的非互易纠缠具有反直觉的能力,可以保持其
完整作者列表: Tong, Fei;加州大学河滨分校,化学 Xu, Wenwen;马萨诸塞大学阿默斯特分校,聚合物科学与工程 Guo, Tianyi;肯特州立大学,先进材料与液晶研究所 Lui, Brandon;加州大学河滨分校,Hayward, Ryan;马萨诸塞大学,聚合物科学与工程 Palffy-Muhoray, Peter;肯特州立大学,先进材料与液晶研究所 Al-Kaysi, Rabih;沙特·本·阿卜杜勒阿齐兹国王健康科学大学,基础科学 Bardeen, Christopher;加州大学河滨分校,化学
• 必须完成风险评估,以涵盖学习者和同事对这些机器的使用。这通常涉及采用和调整模型风险评估,例如 BS4163: 2014 • 必须实施定期维护计划并保存维护日志。这应包括每日、每周和每学期检查,涵盖一般维护并识别任何需要维修的故障 • 局部排气通风 (LEV) 系统应每周至少清洁一次。 COSHH 法规要求至少每 14 个月检查一次系统,并保存系统效率记录 • 学员应了解与设备相关的危险以及使用过程中应采取的预防措施 • 在使用设备之前,应培训和评估学员是否胜任,并应保存他们的培训记录 • 学员应始终受到经过培训的胜任人员的监督 • 应提供并遵守砂光机的健康和安全规则 向学员展示砂光/抛光机应包括: • 所有控件的位置,即车间紧急停止按钮、隔离开关以及机器上的启动和紧急停止按钮 • LEV 的使用 • 如何检查研磨表面的状况 • 工作台的正确位置,即尽可能靠近,通常不大于 2 毫米 • 使用护目镜和防尘面罩(如果需要) • 如何握住被打磨的材料,即牢牢地放在机器工作台上,将手指放在工件后面以防止接触研磨表面 • 在盘式砂光机上使用象限防护装置以确保始终逆着砂磨表面的旋转方向送入工件 • 如何将工件送入砂带或砂盘表面,以确保磨损均匀并防止烧伤 • 如何逆着线轴的旋转方向送入工件 • 每次由 1 名学生操作机器 • 使用不同材料(例如,打磨木材和塑料)时出现的问题 • 关闭机器时,切勿将其置于完全停止状态