EEE531 口语处理 EIE509 卫星通信技术与应用 EIE511 VLSI 系统设计 EIE515 先进光通信系统 EIE522 模式识别:理论与应用 EIE529 数字图像处理 EIE546 视频技术 EIE553 数据通信安全 EIE557 计算智能及其应用 EIE558 语音处理与识别 EIE560 微电子处理与技术 EIE563 数字音频处理 EIE566 无线通信 EIE567 无线电力传输技术 EIE568 物联网工具与应用 EIE569 传感器网络 EIE570 光子学深度学习 EIE571 光子系统分析 EIE572 信息光子学 EIE573 移动边缘计算 EIE575 车辆通信和联网技术 EIE577 光电器件 EIE579 先进电信系统 EIE580 用于通信系统应用的射频和微波集成电路EIE587 信道编码 EIE589 无线数据网络 EIE590 论文
胆固醇 27 和酰胺 28 在凝胶化学中很常见,利用 LMWG 实现必要且有效的合成仍然很困难。随着超分子凝胶化过程的演示,凝胶研究的当前方向 29 是将金属离子与 LMWG 一起引入,以形成多功能超分子金属凝胶。多种金属离子和低分子量有机组分的组合相结合,可生成具有不同自聚集机制和非共价特性的金属同质凝胶,从而导致在科学和技术领域开发出更引人注目和卓越的特性。超分子金属凝胶在材料科学的众多领域有着重要的应用,包括食品工业、化妆品、电子发射、光物理、逻辑门、药物输送、细胞培养、生物矿化、医学诊断、组织工程、光刻、光学活性、能量存储、电荷传输、催化、导电性、执行器、磁性材料、氧化还原响应、化学传感器、电化学和光电器件、纳米科学和纳米电子学等。30 – 49
摘要:单晶半导体衬底上的外延和薄膜形成工艺直接实现了各种复杂的 III-V 异质结器件设计,因此决定了最终的电子或光电器件性能。III-V 异质结不仅包括结上掺杂剂种类变化的概念,更重要的是,还包括半导体晶体的变化,从而区分了 III-V 器件设计选项以及与硅基器件相比的伴随性能优势。最早的商业化实例是 AlGaAs/GaAs 结,它利用能带隙差异来设计电荷载流子限制。GaAs 的带隙比 AlGaAs 窄,并且可以通过精确控制 Al 的成分来“调整”AlGaAs 的带隙。数十年的研究已经导致整个半导体光谱中 III-V 异质结化合物的开发;元素周期表的 III 列中的 B、Al、Ga 和 In,以及 V 列中的 N、P、As 和 Sb。该演讲将深入探讨 III-V 外延和薄膜沉积技术、关键工艺考虑因素、异质结挑战和局限性等主题,并提供对未来机遇的看法。
摘要:光学超表面能够操纵超薄层中的光与物质的相互作用。与金属或电介质超表面相比,由电介质和金属纳米结构组合而成的混合超表面可以为系统中存在的模式之间的相互作用提供更多可能性。在这里,我们研究了通过单步纳米制造工艺获得的混合金属-电介质超表面中晶格共振之间的相互作用。有限差分时域模拟表明,在选定的几何参数发生变化时,Ge 内部波长相关吸收率中出现的模式避免交叉,这是强光耦合的证据。我们发现测量和模拟的吸收率和反射光谱之间具有良好的一致性。我们的超表面设计可以轻松纳入自上而下的光电器件制造工艺,可能的应用范围从片上光谱到传感。关键词:超材料、半导体、杂化、光电子学
基于等离子体传感方案的光学生物传感器将高灵敏度和选择性与无标记检测相结合。然而,使用笨重的光学元件仍然阻碍了获得在实际环境中进行分析所需的微型系统的可能性。这里展示了一种基于等离子体检测的完全微型光学生物传感器原型,它能够快速和多路复用地感测高分子量和低分子量(80 000 和 582 Da)的分析物作为牛奶的质量和安全参数:一种蛋白质(乳铁蛋白)和一种抗生素(链霉素)。光学传感器基于以下智能集成:i)用作发光和光感应元件的微型有机光电器件和 ii)用于高灵敏度和特异性局部表面等离子体共振 (SPR) 检测的功能化纳米结构等离子体光栅。该传感器提供定量和线性响应,达到 10 − 4 的检测限
在供应器型有机光电器件中,例如有机太阳能电池(OPV)和Expiplex型有机光二极管(EOLED),电荷转移(CT)机制是导致库仑绑定的电荷对(Geginate对(Geginate Pair)的主要过程,它们要么将其分散到自由载体中,要么将其降低到自由载体或放松身心。广泛的理论和实验工作以Onsager计算为基础,以确定初始电子孔距离,并研究电场对Geminate对分离和自由载体的产生的影响。在这里,我们讨论了Reveres Onsager过程,随着E-H距离的降低,场诱导蓝色光谱移动。求解场效应库仑势能方程,我们能够解释观察到的蓝色光谱移位并确定设备结构中的E-H距离,库仑势能和电场分布。该过程提供了对捐赠者接口处的外部重组的基本理解。
(2)先进材料是指通过专门的加工合成技术开发而产生的具有工程特性的材料,包括陶瓷、高附加值金属、电子材料、复合材料、聚合物和生物材料。(3)生物技术是指应用重组DNA技术、生物化学、分子和细胞生物学、遗传学和基因工程、细胞融合技术和新的生物工艺等技术,利用生物体或生物体的部分来生产或改造产品,改良植物或动物,开发用于特定用途的微生物,确定小分子药物开发的目标,或将生物系统转化为有用的过程和产品或开发用于特定用途的微生物。(4)电子器件技术是指涉及微电子、半导体、电子设备和仪器、射频、微波和毫米波电子、光学和光电器件以及数据和数字通信和成像设备的技术。 (5)环境技术,是指对人类健康或环境的威胁或损害的评估和预防、环境清理、以及替代能源的开发。
二维材料具有独特的光电特性,是可调、高性能光电器件的有希望的候选材料,而这些光电器件对于光学检测和量子通信至关重要。[1–3] 为了实现二维纳米片的可扩展生产,液相剥离 (LPE) 已被广泛探索,但与微机械剥离相比,其电子性能往往会受到影响。[4–6] 在 LPE 中,块状晶体被剥离成几层纳米片,通常使用超声波能量在适当的溶剂和/或稳定剂存在下,然后通过离心选择尺寸。[7] 虽然单个 LPE 纳米片可能表现出很高的光电质量,但基于渗透纳米片薄膜的器件通常会存在纳米片之间较大的接触电阻。 [7–9] 降低片间电阻的一种策略是优化 LPE 工艺,以获得具有较大横向尺寸的高纵横比纳米片,从而减少片间连接的数量和
摘要:目前,单结钙钛矿基太阳能电池的光电转换效率已达到26%以上。钙钛矿基光电器件效率的进一步提升主要受到缺陷的限制,缺陷会导致载流子的非辐射复合。为了提高效率并确保可重复地制造高质量的层,了解钙钛矿的成核和生长机制以及相关的工艺控制以降低缺陷密度至关重要。在本研究中,我们研究了一种有前途的窄带隙钙钛矿——甲脒甲基铵碘化铅 (FAMAPbI 3 ),用于高性能单结太阳能电池。通过掠入射广角 X 射线散射和光致发光实时检查了 FAMAPbI 3 真空共沉积过程中结构和光电特性的时间演变。这种分析技术的组合揭示了钙钛矿沉积早期阶段与晶格应变相关的固有缺陷密度和层形貌的演变。关键词:铅卤化物钙钛矿、真空沉积、原位表征、缺陷、固有应力■简介
摘要。自 1971 年 GaAs MESFET 问世以来,GaAs 的生长和加工技术已经成熟到模拟和数字 IC 生产在工业水平上进行的程度。对更高工作频率、低噪声系数和更高增益的不断增长的需求导致了基于 GaAs 和相关化合物的较新的器件结构,例如 HEMT 和 HJBT。此外,GaAs 和相关化合物具有令人兴奋且经过验证的功能,可以产生、检测并将光转换为电信号。这开辟了光电器件及其与 MESFET 和其他传统器件集成的广阔领域。所有这些开发活动的基本构建块仍然是 GaAs MESFET,它也被广泛用作分立形式的低噪声放大器、混频器、振荡器和高功率放大器。本文回顾了低噪声和高功率 MESFET 的设计方面、制造技术、直流和微波特性。本文回顾了各种技术进步,如用于源极接地的通孔、用于低寄生互连的空气桥技术和聚酰亚胺钝化,这些技术进步有助于进一步提高工作频率、低噪声和高功率输出。最后,还介绍了 CEERI 制造的一些代表性设备结果。
