在古典世界中遇到的自由度之间的量子纠缠是由于周围环境而挑战。为了阐明此问题,我们研究了在两分量量子系统中产生的纠缠,该量子系统包含两个巨大的颗粒:一个自由移动的光电电子,该光学的光电膨胀到中镜长度尺度和浅色的原子离子,代表光和物质的混合状态。尽管经典地测量了光电子光谱,但纠缠使我们能够揭示有关离子穿着状态的动力学的信息,以及由种子自由电子激光器传递的飞秒极端紫外线脉冲。使用时间依赖的von Neumann熵来解释观察到的纠缠产生。我们的结果揭示了使用自由电子激光器的短波长相干脉冲来生成纠缠光电子和离子系统来研究距离的怪异作用。
摘要:本文提出了一种保证基于半导体化合物GaSb及其固溶体GaInAsSb的发光二极管参数时间稳定性和温度稳定性的方法。改进了基于GaInAsSb(1.94μm和2.2μm)的双波长发光二极管的制备工艺,确定了其在-40℃至80℃温度范围内的稳定性。开发了一种双结构半导体光电子器件方案,使双色LED的初始测量发射流与参考发射流相等,保证了参数的时间稳定性。开发了一种技术,可以保证双色LED中两个发射峰位于不同波长的LED芯片的初始发射流的时间稳定性和相等性,从而决定了光电子器件的测量精度。关键词:光电子学,半导体结构,双色LED,稳定技术,稳定框图,稳定示意图。
在当今使用的光敏设备中引入,光电倍增管(或PMT)是一种多功能设备,可提供超快速响应和极高的灵敏度。典型的光电倍增管构成的光电阴极(光电极),然后是fo-Cused电极,电子乘数和真空管中的电子集合(阳极),如图1。当光进入光电极时,光电极将光电子发射到真空中。然后,这些光电子由聚焦电极电压指向电子乘数,其中电子乘以次级射击过程。然后由阳极作为输出信号收集乘以的电子。与当前用于检测紫外线,可见的和近红色区域的其他光敏设备相比,由于次级发射乘积,光电倍增管具有极高的灵敏度和极低的噪声。光电倍增管还具有快速的回答和大型光敏区域的选择。本节描述了光电倍增管结构和基本操作特征的主要特征。
摘要X射线光电子光谱(XPS)分析技术已广泛应用于半导体制造和故障分析。我们将其用于晶圆制造中的缺陷分析和薄膜表征,并将其用于铜材料的XPS价状态分析。XPS技术也与TOF-SIMS技术共同应用。在晶圆厂,半导体和LED制造中,测量纳米仪范围内超薄膜的厚度非常具有挑战性。通常,TEM被广泛用于超薄薄膜物理测量,但通常其横向尺寸受到限制。在本文中,我们将研究X射线光电子光谱分析技术,该技术采用角度分析技术采用新的分析方法。此外,我们还将新方法应用于Sion膜的分析。在约1.4nm处测量超薄薄膜是实现的。此方法可用于SIO 2厚度测量,在AU上进行自组装的硫醇单层和硅底物上HFO 2的厚度。
光电电流的值是由发出的电子数量计算得出的,一个电子光电电流与在金属表面上入射的辐射强度的强度成正比,因为强度与每秒触动的光子数量成比例,因为每个光电子都必须吸收单个光电流,因此,光电流的速度<
摘要通过极端超紫罗兰(XUV)attosecond激光脉冲对原子或分子的光电离,需要仔细考虑来自光电离过程导致的离子 +光电子纠缠程度。在这里,我们考虑通过the骨的attosent激光脉冲对中性H 2的光电离心引起的相干H 2 +振动动力学。我们表明,chi脚的激光脉冲导致离子 +光电子纠缠以及从纯状态到混合状态的过渡。这种过渡的特征是评估纯度,对于转换限制的attosent激光脉冲而言,它接近统一性,并降低到由在光电离过程中填充的振动态数确定的值,以增加chirp参数的值。在计算中,通过用短的超紫色(UV)激光脉冲计算H 2 +阳离子的时间延迟解离来探测振动动力学。独立于chirp的大小,可以通过记录XUV-UV延迟依赖性动能与随附的光电子的动能,从而恢复相干的振动动力学。
IEEE 医疗技术创新奖章,表彰其在医疗、医学和健康科学领域为推动技术和应用做出的杰出贡献。IEEE Nick Holonyak, Jr. 半导体和光电子技术奖章,表彰其在半导体光电器件和系统(包括高能效半导体器件和电子产品)方面做出的杰出贡献。
氧空位在塑造金属氧化物的特性中起着至关重要的作用,例如催化,铁电性,磁性和超导性。尽管X射线光电子光谱(XPS)是一种健壮的工具,但准确的氧气空位定量仍然是一个挑战。XPS分析中的一个常见错误是将O 1 S光谱中的531 - 532 eV特征与氧空位相关联。这是不正确的,因为空的氧气位点不会发出光电子,因此不会产生直接的XPS光谱特征。为了解决这个问题,我们提出了三种通过间接特征通过XPS进行氧气空位分析的替代方法:(1)量化阳离子价状态变化,(2)通过归一化的氧气光谱强度和(3)评估FERMI能量从粘合En-Ergy中的电量移位来评估Fermi Ensightic Engy的Fermi Ensive变化。推荐的策略将促进氧气空位的精确XPS分析,从而促进未来的理解和操纵氧空位以进行先进材料开发的研究。
1 福州大学物理与信息工程学院,福建省量子信息与量子光学重点实验室,福建福州 350108 2 日本理化学研究所理论量子物理实验室,日本埼玉县和光市 351-0198 3 日本理化学研究所量子计算中心 (RQC) 量子信息物理理论研究团队,日本埼玉县和光市 351-0198 4 中国科学院物理研究所、北京凝聚态物理国家实验室,北京 100190 5 中国科学院大学中国科学院拓扑量子计算卓越中心,北京 100190 6 华南理工大学物理与光电子学院,广州 510640 7 华南理工大学物理与光电子学院,现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室量子信息交叉学科中心浙江大学物理学系,杭州 310027 8 波兰波兹南亚当密茨凯维奇大学物理学院自旋电子学和量子信息研究所,61-614 9 密歇根大学物理系,密歇根州安娜堡 48109-1040,美国