四个直接数值模拟 (DNS) 数据集涵盖了 8 至 14 的有效自由流马赫数,用于研究高超音速边界层中湍流引起的气动光学畸变行为。数据集包括两个来自平板边界层(马赫数 8 和 14)的模拟数据集和两个来自尖锥流(马赫数 8 和 14)的模拟数据集。来自每个 DNS 的瞬时三维密度场被转换为折射率并进行积分以产生由湍流引起的光程差 (OPD) 分布。然后将这些值与文献中的实验数据和现有的 OPD 均方根模型进行比较。虽然该模型最初是为马赫数 ≤ 5 的流动开发的,但它为我们比较高超音速数据提供了基础。
研究了湍流引起的亚音速、超音速和高超音速边界层的气动光学畸变特性。使用了四个边界层的直接数值模拟 (DNS) 数据,这些边界层的标称马赫数范围从 0.5 到 8。亚音速和超音速边界层的 DNS 数据是平板流。两个高超音速边界层均来自入口条件为 8 马赫的流动,其中一个是平板流,另一个是尖锥上的边界层。这些数据集中的密度场被转换为折射率场,这些折射率场沿预期的光束路径积分,以确定光束穿过湍流场的折射时将经历的有效光程长度。然后,通过考虑与体边界层效应相关的平均路径长度和倾斜问题,确定光程差 ( ) 的分布。将 的均方根与现有模型进行比较。发现从亚音速和超音速数据确定的 值与现有模型非常匹配。可以预料的是,由于在模型推导过程中做出了强雷诺类比等假设,高超音速数据匹配得并不好。到目前为止,该模型从未与本文中包含的马赫数如此之高的流动或流过尖锥几何的流动进行比较。
该技术的原理已在之前的报告中描述过,这里不再详细讨论。更多详细信息可参见 Bell et al, 1994, Adrian et aI, 1994 和 Notholt et aI, 1994 及其参考文献。总之,NPL 开发了一种高分辨率光谱仪,在 2.5-13.5 pm(750-4000 cm-1)的中红外光谱区域内,最大光程差为 2.57 m(L\v Iv <3.2 x 1Q-6)。图 3 显示了该仪器的示意图。在本程序过程中,通过使用一系列窄带光学滤波器,该仪器的检测灵敏度得到了提高。此外,该仪器已进行了修改,可以同时在长波长和短波长通道中进行测量。这些改进使 NPL 能够从单个高分辨率光谱测量 CION02 的垂直柱,CION02 是一个非常重要的临时平流层水库,与氯催化臭氧消耗有关,该光谱可在 73 秒内获得。图 4 显示了在 SESAME 活动第一阶段使用 FTIR 仪器获得的光谱示例。从图 4 可以看出,CION02 v 4 Q 分支吸收与 CO2 和 03 吸收线强烈混合。CIONO2 垂直柱的检索需要对应用于具有重叠吸收的其他分子的拟合程序进行重大改进。这需要一个两阶段程序。在第一阶段,H2O、CO2 和 03 特征拟合在宽光谱窗口 (779.0-780.7 cm-1) 上。在第二阶段,CION02 特征拟合在从 779.9-780.3 cm-1 延伸的较窄窗口上。估计的检测限以斜柱表示 (斜柱 = 垂直柱 x 大气质量因子),估计为 2 x 1015 mol cm-2。应该注意的是