尽管人为气候变化的科学原理是良好的,但现有的二氧化碳变暖作用的现有含量依赖于光谱吸收数据库,这掩盖了气候问题的物理基础。在这里,我们显示了CO 2辐射强迫如何通过对分子的关键振动旋转转变的第一原理描述来表达。我们的分析阐明了二氧化碳的有效性作为温室气体对对称拉伸模式ν1和弯曲模式ν2之间的费米共振的依赖性。值得注意的是,在原本普通的三原子分子中,显然是意外的量子共振对地球时期的气候产生了很大的影响,并且还将有助于确定由于人类活动而导致的未来温暖。除了提供对地球上CO 2辐射强迫的简单解释外,我们的结果可能对了解其他行星的辐射和气候具有影响。
在众多科学学科的挑战期间,识别物体或场景的物质组成一直是一种构成。一种方法,植根于牛顿,弗劳恩霍夫(Fraunhofer)和其他许多方法的早期作品,它利用了从物体反射的光中的光谱变化。由于材料通常具有不同的光谱吸收曲线,因此反射率的光谱分析在检查具有各种尺度的材料方面已经与众不同:诸如粉末[28,47]和食品[29,44],地理材料分布[9,19,22],以及Celestial对象的组成[18,18,336]。在场景中的光线运输远远超出了反射。当对象被照亮时,它不仅反射出照明点,而且经常穿透表面。这种现象称为“地下散射”,对于我们感知到它们的出现至关重要,并且在许多应用中引起了广泛关注,包括光传输建模[45],逆光传输[5],场景分析[30]和材料分类[6,26,38,40,40,40,41]。值得注意的是,地下散射也受到入射光波长的显着影响。光谱特征和地下散射之间的这种强大协同作用为增强材料分类提供了独特的机会。也许,了解具有地下散射光传输的最有用的物理测量是光谱双向散射频率分布函数(BSSRDF)[45]。因此,测量
5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building 5th floor of the Fusion Building Online reservations Available Online reservations Available Online reservations Available ・Optical microscope related 〇 〇 〇 〇 (Microstructure observation) (Microstructure observation) (Microstructure observation) (Microstructure observation) ・・・・Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment Cell-related equipment 〇 〇 〇 (Cell analysis and preparation) (Cell analysis and preparation) (Cell analysis and preparation) (Cell analysis and preparation) ・・・Protein-related equipment Protein-related equipment Protein-related equipment Protein-related equipment △ △ △ △ (Mass analysis and protein analysis) (Mass analysis and protein analysis) (Mass analysis and protein analysis) (Mass analysis and protein analysis) ・・・・Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment Nucleic acid-related equipment 〇 〇 〇 (DNA分析)・离心分离〇(生物学成分的纯化和浓度)・光分析相关(使用光谱吸收,荧光等质量和定量)基础医学基础医学构建基本医学基础医学构建基本医学基础医学构建基本医学builder buildent builtion fotecenter x photoctenter x x×posters ID,图片,图像/图像,图像/图像△(超细结构观察,分析,样品制备) *在线预订确认仅・ tsubstance标本制备××××(轻松的组织样品制备服务)・总通用设备△通用设备△
深水地平线 (DWH) 大规模和持续性漏油事件对应急响应能力提出了挑战,需要在天气和操作层面进行准确、定量的石油评估。尽管经验丰富的观察员是溢油应急响应的中流砥柱,但训练有素的观察员人数很少,而且天气、石油乳化和场景照明几何等混杂因素也带来了挑战。广泛的机载和星载被动和主动遥感技术辅助了 DWH 溢油和影响监测。油膜厚度和油水乳化比是控制/清理的关键溢油响应参数,对于厚 (>0.1 毫米) 油膜,这些参数是从 AVIRIS(机载可见光/红外成像光谱仪)数据中定量得出的,使用基于近红外光谱吸收特征的形状和深度的光谱库方法。MODIS(中分辨率成像光谱仪)卫星,可见光谱宽带数据,表面浮油对太阳反射的调制,允许推断总浮油。多光谱专家系统使用神经网络方法提供快速响应厚度类别图。机载和卫星合成孔径雷达(SAR)提供全天空条件下的天气数据;然而,SAR 通常无法区分厚(>100 μ m)的油膜和薄油膜(至 0.1 μ m)。UAVSAR(无人驾驶飞行器 SAR)的信噪比显著提高,空间分辨率更高,可以成功区分与油膜厚度、表面覆盖率和乳化程度相结合的模式。使用 AVIRIS 研究了现场燃烧和烟羽,并证实了星载 CALIPSO(云气溶胶激光雷达和红外路径探测卫星观测)对燃烧气溶胶的观测。CALIPSO 和水深测量激光雷达数据记录了浅层地下石油,尽管需要辅助数据进行确认。机载高光谱、热红外数据具有夜间和阴天收集优势,并且与 MODIS 热数据一样被收集。然而,解释挑战和缺乏快速反应产品阻碍了其大量使用。快速反应产品是响应利用的关键——数据需求对时间至关重要;因此,高技术准备水平对于遥感产品的运营使用至关重要。DWH 的经验表明,开发和投入使用新的溢油应急遥感工具必须先于下一次重大石油泄漏事件发生。© 2012 Elsevier Inc. 保留所有权利。
Electronica, Automatica”,布加勒斯特,27,3,页 107-110,(1983 年) Rns - CNCSIS 认可的全国发行的专业杂志。 Rno——其他在全国发行的专业杂志。 VisI - 在国内外组织的公认的国际科学事件卷,已编入 ISI 索引 VisB - 在国内外组织的公认的国际科学事件卷,已编入该领域的国际数据库 - BDI 索引,该数据库根据绩效标准执行选择出版物的过程。 Vi- 在国内外组织的公认的国际科学活动的卷宗; Vn——国家科学事件卷。 Vi:国内外公认的国际科学事件刊物上发表的文章列表(17 个 ISI 索引)Vi1。 VA Loiko、A. Konkolovich、A. Minskievich、D. Manaila-Maximean、O. Danila、V. Circu、A. Barar,“掺杂碳纳米管的聚合物分散液晶膜的光透射”,第十一届国际科学会议“凝聚态介质中的富勒烯和纳米结构”,2020 年 11 月 24-26 日,白俄罗斯明斯克,卷 proc。 P.110,ISBN 978-985-7138-17-3,俄文。 Vi2。 Doina Mănăilă-Maximean、Paul Ganea、Valery A. Loiko、Alexander V. Konkolovich、Viorel Cîrcu、Octavian Danila、Ana Bărar,“掺杂纳米粒子的聚合物分散液晶:电和电光特性”(受邀),SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日,会议录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182R (2020) DOI:10.1117/12.2572104 Vi3。 Theodora A. Ilincă、Doina Manaila-Maximean、Paul C. Ganea、Iuliana Pasuk、Viorel Cîrcu,“基于 4-吡啶酮配体的新型镧系元素介晶的极化发射和介电研究”,SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日会议记录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182U (2020),DOI:10.1117/12.2572109 Vi4。 Ligia Frunza、V. Florin Cotorobai、Monica Enculescu、Irina Zgura、C. Paul Ganea、Maria Birzu、Doina Mănăilă-Maximean,“罗丹明 B 溶液在羊毛基质上的吸附、芯吸行为和光降解测试”,SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日,会议录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182W(2020),DOI:10.1117/12.2572130 Vi5。 A. Bărar、O. Dănilă、D. Mănăilă-Maximean、VA Loiko,2019 年 9 月。 “通过偏振平面旋转控制可调液晶/超材料结构中的主动光谱吸收”。在纳米技术和生物医学工程国际会议上(第 299-303 页)。 Springer,Cham.,DOI:10.1007/978-3-030-31866-6_58,WOS:000552314200058 Vi6。 D. Manaila Maximean、A. Barar、CP Ganea、PLAlmeida, O. Dănilă,2019 年 1 月。“液晶羟丙基纤维素网络复合材料的阻抗谱和电光切换时间”。光电子学、微电子学和纳米技术高级主题 IX(第 10977 卷,第 109770P 页)。国际光学和光子学学会。(6 页),WOS:000458717900024