光量子态可以使用基于电路或基于测量的方法来处理。大规模基于电路的处理需要深层电路,从而导致重大损失。相比之下,基于测量的方法使用浅层电路和测量来实现大规模处理。本演讲重点介绍一种测量诱导的分束器网络,该网络具有 400 种输入和输出模式,通过多模 CV 纠缠簇态和同相检测来实现。这种方法最大限度地减少了与深层电路相关的损失并增强了光量子信息处理,为未来的研究和应用提供了有希望的方向。
摘要:量子态层析成像 (QST) 是实验量子信息处理几乎所有方面的关键要素。作为量子环境中“成像”技术的类似物,QST 天生就是一个数据科学问题,机器学习技术(尤其是神经网络)已得到广泛应用。我们构建并演示了用于光子偏振量子比特 QST 的光学神经网络 (ONN)。ONN 配备了基于电磁感应透明性的内置光学非线性激活函数。实验结果表明,我们的 ONN 可以准确确定量子比特状态的相位参数。由于光学对于量子互连非常有需求,我们的 ONN-QST 可能有助于实现光量子网络,并启发将人工智能与量子信息研究相结合的想法。
第一个QKD协议是由Bennett和Brass-Ard在1984年提出的[3],称为BB84协议。这采用单个光子的四个极化状态来编码随机键。SHOR,PRESKILL等人完成了严格的安全证明。[4]。第一个基于纠缠的利益是E91方案,Ekert于1991年提出[5]。一般而言,QKD供应托式的实现可以分为两类:制备量化QKD协议,例如BB84,其中一个方在光量子状态下将随机键赋予随机键,并发送到接收器的接收器,其中键被解码[6];以及基于纠缠的QKD协议,例如E91协议,其中Alice准备纠缠的状态并与BOB共享一个州的一方,并且测量结果生成随机键[6]。
Rose 是澳大利亚国立大学 (ANU) 物理研究学院的高级研究员。她于 2013 年在澳大利亚国立大学获得博士学位,随后在法国 Aimé Cotton 实验室和美国蒙大拿州立大学工作,并获得了富布赖特奖学金,之后于 2016 年以澳大利亚研究委员会 DECRA 研究员的身份重返澳大利亚国立大学。2018 年,她因其研究成果被评为澳大利亚首都领地年度科学家。Ahlefeldt 博士的研究专长是稀土晶体的量子信息应用,包括量子存储器、量子处理器和用于各种量子计算技术的光量子互连。她的主要研究兴趣在于优化稀土材料以提高量子器件性能,并且在强相互作用稀土系统的实验和理论研究方面拥有领先的专业知识。
摘要:我们在 Innovate UK AirQKD 项目下开发的车辆到基础设施 (V2I) 应用中提供了自由空间光量子密钥分发 (FSO-QKD) 系统的实际实现。FSO-QKD 系统提供量子安全加密密钥,作为整个 V2I 应用中安全通信的基础,以解决已知的 V2I 安全问题。本文档包括量子密钥生成过程和已部署的 V2I 技术的摘要。随后,介绍了系统设计、实际实验及其执行的高级视图。多个 AirQKD 项目合作伙伴开发了从半导体和硬件到安全协议和软件等技术,以实现 QKD 安全的 V2I 系统。开发的技术包括一种用于保护 V2I 通信的新型零信任安全协议,确保系统不会接受来自受感染设备的伪造 V2I 消息。
拓扑光子学为实现更强大的光学器件以抵抗某些缺陷和环境扰动提供了一种有前途的方法。量子逻辑门是量子计算机的基本单元,广泛应用于未来的量子信息处理。因此,构建强大的通用量子逻辑门是实现实用量子计算的重要途径。然而,要解决的最重要的问题是如何构造具有拓扑保护的量子逻辑门所需的 2×2 分束器。本文报道了拓扑保护的反向耦合器的实验实现,该耦合器可用于在硅光子平台上实现量子逻辑门,包括控制非门和阿达玛门。这些量子门不仅具有很高的实验保真度,而且对某些类型的缺陷表现出一定程度的容忍度。这项工作为实用光量子计算和信号处理的发展铺平了道路。
纳米尺度上的光与物质的相互作用是许多物理问题的核心,包括用于表征锂离子电池 (LIB) 的光谱技术。对于物理学家和化学家来说,时间相关量子力学中最重要的课题之一是光谱学的描述,它指的是通过物质与光场的相互作用来研究物质。从经典的角度来看,光与物质的相互作用是振荡电磁场与带电粒子共振相互作用的结果。从量子力学的角度来看,光场将起到耦合物质量子态的作用。光与物质的相互作用从根本上讲是量子电动力学的。在许多情况下,它们被描述为电子的量子跃迁,伴随着光量子的发射、吸收或散射 [1]。在过去的几十年里,一些实验已经研究了电磁波与 LIB 中使用的各种材料的相互作用,以造福社会 [2-4]。目前,电池界的研究
摘要:由于光量子态具有潜在的优势,基于光量子资源的水下通信在过去五年中引起了广泛关注。在此背景下,我们建议在介观强度范围内进行操作,其中光学状态分布良好,所用的探测器具有光子数分辨率。通过利用这些特性,我们证明了一种基于介观双光束状态非经典性的实验量化的新型通信协议可用于通过 Jerlov I 型水通道传输以具有不同平均值的两个单模伪热状态编码的二进制信号。实验结果与开发的理论模型完全一致,并且还根据与两个信号相对应的数据样本研究了协议的可行性。结果的良好质量鼓励更实际地实施该协议,同时探索量子态保持非经典状态的最大距离,从而仍然可以正确区分。
摘要:光量子存储器的存储和检索效率 (SRE) 和寿命是扩大量子信息处理规模的两个关键性能指标。在这里,我们通过实验演示了用于冷原子集合中的两种极化的腔增强长寿命光学存储器。利用电磁感应透明 (EIT) 动力学,我们分别演示了左圆和右圆偏振信号光脉冲在原子中的存储。通过使信号和控制光束共线穿过原子并将信号光的两种偏振存储为两个磁场不敏感的自旋波,我们实现了长寿命 (3.5 毫秒) 的存储器。通过在冷原子周围放置一个低精度光学环腔,信号光和原子之间的耦合得到增强,从而导致 SRE 增加。所提出的腔增强存储表明 SRE 约为 30%,对应于固有 SRE 约为 45%。
摘要:光量子技术有望彻底改变当今的信息处理和传感器。许多量子应用的关键是纯单光子的有效来源。对于用于此类应用的量子发射器,或对于相互耦合的不同量子系统,量子发射器的光发射波长需要进行定制。在这里,我们使用密度泛函理论来计算和操纵二维材料六方氮化硼中荧光缺陷的跃迁能量。我们的计算采用 HSE06 函数,它使我们能够准确预测 267 种不同缺陷的电子能带结构。此外,使用应变调谐,我们可以定制合适量子发射器的光跃迁能量,以精确匹配量子技术应用。因此,我们不仅提供了为特定应用制造发射器的指南,而且还提供了一条有希望的途径来定制可以耦合到其他固态量子比特系统(例如金刚石中的色心)的量子发射器。