量子计算有望为医学,材料和网络安全提供革命性的功能。有几个平台以有望作为可行的量子计算体系结构,最终的赢家仍不清楚。光量子计算提供了室温运行和巨大可扩展性的诱人承诺。这项技术已远远超出了其单光子的起源,它涵盖了更健壮和有趣的光线状态,这些状态具有量子信息载体,具有内置的抗折叠力。这些所谓的骨器代码与像连续变量的群集状态这样的明显可扩展体系结构结合使用,将具有光学系统的耐故障量子计算带入触手可及。缺失的碎片在实验室实验和用作信息载体的外来状态的光学生产中挤压足够高。在本演讲中,我将概述光学量子计算的可伸缩性和容错性的最新关键进展。
双向微波光量子转导对于通过光纤连接遥远的超级导管至关重要,并且可以大规模启用量子网络。在Bl´esin,Tian,Bhave和Kippenberg的文章中,“使用高泛音大量的声音共振的量子相干微波传输”(Phys。修订版a,104,052601(2021)),通过中介GHz频段的声子模式在微波光子和电信波段光子之间进行了两种方式量子传感器,利用中介GHz频段的声子模式分别使用压电和光学力学相互作用(是首先实现量子力的量子质量cookelectric cou)。在这项工作中,我们同时检查了第一原理的压电和光学相互作用,以及光学模式之间的evaneastent耦合,讨论哪些参数在光学方面最重要的是这种量子传感器。为了额外的效用,我们还编制了一张可以用作传感器元素的光学材料相关属性的表。
激烈的全球开发量子计算机的竞争导致光学因其独特的方法而获得了显着的影响。在2020年,中国通过实现“量子至上”的新闻:光学量子计算机击败了特定计算中最新的超级计算机[1]。2022年,一家加拿大风险公司Xanadu开发了一台光学量子计算机,该计算机还完成了“量子至上”,并启用了云服务供公共使用[2]。这是作者的个人信念,即在光学量子计算机方面,日本由于我们独特的方法而站在世界的前线[3,4]。本文的目的是阐明光学量子计算机引起关注并提出最新研究发展的原因。在考虑量子计算机时,许多人可能会想到超导类型。所有主要的IT公司,例如IBM,都在开发超导量子量子器。在2019年,Google对量子计算的超导量子计算引起了关注,此前有消息称:“量子计算机在三分钟内解决了一个计算,这将为超级计算机需要10,000年的计算” [5]。的确,超级传导方法是当今的主流方法。但是,其发展仍处于起步阶段。就像前跑者真空管计算机完全被晶体管计算机所取代一样,没有人可以预测量子计算的不同方法的未来。近年来,光量子计算机的存在显着增加。研究除了超级传导量子计算机外,如今在全球范围内竞争各种方法,例如被困的离子,半导体和中性原子,并且大多数研究人员都同意赢家仍然未知。原因是,随着新方法的诞生,可能的飞跃变得显而易见[4]。如上所述[2],Xanadu的光学量子计算机实现了“量子至上”的外观,实现了10,000多个光脉冲[6-8]的量子纠缠以及高度可扩展的光学量子计算机架构的理论建议[9-11]是这种新方法的所有结果。从历史上看,与其他量子相比,从技术上讲是光量子的光子在技术上更易于操作和测量,并且已用于量子力学中的原理验证实验。
光子量子信息处理是量子技术的主要平台之一 1 – 5,它主要依靠光量子干涉来产生不可或缺的有效光子 - 光子相互作用。然而,由于光子的玻色子性质 7 和传统酉光学元件的受限相位响应 8、9,这种有效的相互作用从根本上局限于聚束 6。在这里,我们提出并通过实验证明了非酉超表面实现的光量子干涉的新自由度。由于独特的各向异性相位响应产生了两个极端的本征操作,我们展示了对两个单光子有效相互作用的动态和连续控制,使得它们表现出玻色子聚束、费米子反聚束或任意中间行为,超出了它们固有的玻色子性质。这种量子操作为基础的量子光物质相互作用和用于量子通信、量子模拟和量子计算的创新光子量子装置打开了大门。超材料是一种具有亚波长元素的结构化材料,可以实现自然界中无法找到的波响应。通过定制超材料,人们已经展示了诸如负折射率、亚衍射成像和隐形斗篷等前所未有的特性 10 – 13 。超表面(二维超材料)使我们能够利用平面光学任意定制经典光的波前和传播 14 – 18 。同时,光子是极好的量子信息载体,因为它们具有长相干时间、室温稳定性、易于操纵和光速信号传输。使用单光子源、分束器、移相器和单光子探测器的量子光子学一直是量子计算、量子模拟和量子通信的主要平台之一 1 – 5 。因此,将超材料无与伦比的光控制与量子光学相结合,可以带来量子信息应用的全新可能性 19 – 22 。光子量子信息处理应用(如线性光学量子计算 1 、玻色子采样 23、24、量子行走 25 和量子通信 26)的核心操作单元是量子双光子干涉 (QTPI)。分束器是此量子操作的关键元素。当两个无法区分的单光子同时到达 50:50 分束器的两个输入端口时,QTPI 表现为洪-欧-曼德尔 (HOM) 效应 6 。在原始的 HOM 实验中,两个光子总是聚集在一起,并以相同的输出离开分束器
玻色子模式在各种量子技术中有着广泛的应用,例如用于量子通信的光子、用于量子信息存储的自旋系综中的磁振子和用于可逆微波到光量子转导的机械模式。人们对利用玻色子模式进行量子信息处理的兴趣日益浓厚,其中电路量子电动力学(电路 QED)是其中的主要架构之一。量子信息可以编码到具有长相干时间的玻色子超导腔模式的子空间中。然而,标准的高斯运算(例如,光束分裂和双模压缩)不足以实现通用量子计算。主要的挑战是在高斯运算之外引入额外的非线性控制,而不会增加显著的玻色子损失或退相干。在这里,我们回顾了超导电路单个玻色子码通用控制的最新进展,包括幺正控制、量子反馈控制、驱动耗散控制和完整耗散控制。还讨论了纠缠不同玻色子模式的各种方法。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。保留所有权利。
本文报告了光量子位之间的量子 - 逻辑门实现的实验实现。该门的物理机制依赖于电磁诱导的透明度,而Rydberg在87 rb原子的超低集合中被困在中等辅助弓形谐振器中。在第一次,使用量子非线性系统实现的效率超过了线性光学量子计算中的最新效率。Qubits以各个光子自由度的极化程度实现。空间双轨设置将这些光子引导到谐振器或旁路导轨上,然后重组这两条路径。时间门协议由三个步骤组成。首先,作为rydberg激发,控制光子可逆地存储在原子集合中。在第二步中,在存储时间内从谐振器中反映目标光子。如果存在对照激发,Rydberg封锁会诱导条件π相移。在第三步中,检索控制光子。此门的平均效率为41。7(5)%和分组的过程实力为81(2)%。偏振式钟形状态的产生在78(3)%和82(2)%之间产生。显示了栅极向多个目标光子的延伸,从而产生了Greenberger-Horne-Zeilinger状态为3、4和5光子,并具有62个光子。3(4)%,54。6(1。4)%和54。8(5。3)%。
在近几十年内,可编程光子学领域已经显着提高,这是对复杂应用的不断增长的驱动,例如光量子计算和光子神经网络。但是,随着这些应用的复杂性的增加,对新型设计的需求越来越多,可以增强电路传输并实现进一步的微型化。光子波导阵列(WAS)在集成光子学中占有独特的位置,因为它们实现了“始终”哈密顿量,并且在自由空间光学方面没有直接的类似物。他们在各个领域找到了应用,包括光传播研究,量子步行和拓扑光子学。尽管具有多功能性,但缺乏可重构性限制了其实用性,并在很长一段时间内阻碍了进一步的进步。最近,可编程的波导阵列(PWA)已成为克服静态WAS的局限性的有前途的解决方案,并且已证明基于PWA的架构已被证明是通用的。这种观点提出了基于PWA的光子电路的愿景,作为一个新的跨学科领域。我们回顾了PWA的发展历史,并概述了它们在模拟,沟通,传感以及经典和量子信息处理等领域的潜力。这项技术有望随着可编程光子学,纳米制作和量子控制的进步而变得越来越可行。
8 木下健 长崎科学技术大学校长 东京大学名誉教授 9 佐藤胜明 东京农工大学名誉教授 10 佐藤千明 东京工业大学科学技术研究所副教授 11佐藤诚 东京工业大学名誉教授 12 谷冈明彦 东京工业大学名誉教授 13 中山智博 国家研究开发机构日本科学技术振兴机构研究开发战略中心企划管理室主任/研究员 14 花田修二 东北大学名誉教授 15 绿川胜美 日本理化学研究所光子工程中心主任 16 村口正宏 学部电气工程系教授17 东京理科大学工学部博士 17 森本正幸 东海原大学教授 18 山本英和 千叶工业大学工学部电气电子工程系教授 19 东京理科大学工学院机械工程系教授 山本诚 20 日本科学技术振兴机构创新研究开发推进项目项目经理 山本义久 21 横山健二 系教授东京工业大学应用生物学系应用生物学系 22 吉田雅之 公共投资杂志主编
我是里雅斯特大学物理系副教授,也是 CNR-INO 的副研究员。我领导着一个在里雅斯特新成立的实验小组(7 名团队成员),研究具有人工量子系统的多体物理学,重点研究关联多轨道费米子系统中的非平衡动力学和传输。我在超冷原子的量子模拟方面的专业知识得到了多次受邀报告、国际合作和在高影响力国际期刊上发表的论文的认可。我目前的研究兴趣包括:超冷量子气体的量子多体物理学 - 强关联量子多体系统、强相互作用费米气体实验、量子杂质、量子传输和非平衡多体动力学、超冷费米气体中的超流动性和磁性、光晶格中的哈伯德物理学、SU(N) 对称费米子模型。实验原子物理和光学技术——激光冷却和捕获、费什巴赫共振、射频精密光谱、光钟光谱、光晶格、任意光势、量子气体显微镜。量子信息和量子光学——光镊阵列、中性原子量子信息处理、光原子相互作用中的集体效应、连续变量量子光学、光量子通信和 QKD。
量子存储器是未来量子技术的中心元素,尤其是量子网络[1-3]。这样的设备允许本地存储,并继电器通过旅行光子携带的量子信息。量子记忆通常涉及一种原子培养基,与光接触,目前正在探索广泛的实验平台,例如,例如[4,5]。为实现实用量子记忆的主要挑战,更通常是所有量子技术,都是它们的认证。,即给定一个由复杂物理系统组成的实际设备,我们如何确保其正确的功能。此外,此认证程序将涉及其他设备,例如,产生特定的光量子状态以及测量设备的来源,该设备可能具有自己的技术缺陷,因此也必须表征。尝试自行认证这些设备将需要访问其他经过认证的设备,依此类推。值得注意的是,事实证明,这项看似艰巨的任务中存在一个优雅的解决方案。量子理论允许“独立设备”的认证技术。“也就是说,可以验证量子设备的正确操作,而无需先验对协议中使用的任何设备(包括可能的源和测量设备)进行先验认证;而不是直接从黑盒情景中观察到的统计数据推断出来。在认证设备以完全表征它时,此概念被称为自我测试[6,7]。[8,9]进行首次实验。到目前为止,这些想法几乎是从纯粹的理论和抽象的观点中完全提出的。见裁判。近年来,已经获得了对自我测试协议的可能性和限制的大量理解,例如,参见[10-20]。虽然自我测试协议通常涉及某些纠缠状态和一些局部测量的认证,但量子进行自测的方法