量子擦除实验通过让延迟事件影响先前记录的、可能广泛分布的经典信息的状态,突破了量子世界与经典世界之间的界限。对于这种令人不安的仅向前因果关系违反的唯一重要限制是,向前依赖信息的分布不能越过过去事件的光锥边界,这一特征确保不会发生因果关系违反——不会重写任何其他人记录的历史。对这一难题的擦除解释需要重写过去记录和分布的信息,这本身就是对因果关系的违反。量子宿命论解释消除了因果重写问题。然而,量子宿命论需要从向前依赖事件的光锥之外详细协调输入,从而严重违反了防止此类事件因果关系违反的同一限制。另一种方法是调用量子擦除的薛定谔猫变体,其中光锥内任意复杂的经典事件都变得依赖于未来事件的量子。与所有薛定谔猫对量子力学的解释一样,这种量子擦除的变体通过丢弃局部经典历史(例如猫身体的信息丰富状态)而违反了因果关系。擦除实验最直接的解释是遵循方程本身的引导,这些方程在纸面上的变换就好像它们的分量与普通的空间和时间限制无关,直到光速对它们施加的限制。将每个量子系统的光锥解释为非时间、非空间单位,其中经典时间和空间没有意义,这会导致多尺度、物质相关的时空定义,其中每个光锥都是一个单一的量子实体。在这样的宇宙中,时间和空间都不是预先存在的、与质量无关的连续体,而是大量不断相互作用和相互限制的量子实体光锥的共识。
光锥体现了物理学中最基本的原理之一:因果关系。在构建描述自然界基本相互作用的模型时,基本要求之一是光锥的存在。事实上,人们已经认识到它们的出现是量子场的相对论不变性的结果 (1)。有趣的是,有几个系统的有效动力学是相对论不变的,有效光锥也发挥了作用。最近的实验表明,有效光锥确实会出现在冷原子气体中 (2, 3)。为了直接观察这些光锥,必须克服几个实验挑战,包括在精细长度尺度上解析系统并测量能够揭示它们的相关可观测量。解决这些问题是设计量子模拟器的更大研究工作的一部分 (4-7)。例如,操纵一维隧道耦合气体可以模拟具有基础重要性的原型场论(8–11),但也可以捕获纳米线中的电荷传输(12)。在这里,我们的目标是使用这个量子模拟器通过实验探索其在非均匀或弯曲度量中模拟动力学的潜力。类似的目标一直是模拟重力系统(13,14)的重点,该系统最近在使用冷原子系统模拟黑洞(15,16)或宇宙学(17–19)过程方面非常成功。在这项工作中,我们研究了非均匀一维量子气体中的关联传播。我们表明,关联前沿遵循模拟声学度量的测地线,并发现传播速度的空间依赖性与理论建模一致。我们观察相关前沿的弹道传播,并讨论这些相关前沿的详细形状、系统边界的反射和周期性复发。
在这里,我们证明了半线性波方程解的全球存在定理,具有批判性的非线性,承认有肯定的哈密顿量。在全球双曲线弯曲的时空中为波方程制定了一个参数,我们将Apriori在非线性波方程的溶液中以最初的能量为单位,从而以直接的方式遵循全局存在。这是通过两个步骤完成的。首先,基于Moncrief的光锥制剂,我们根据过去的光锥从任意时空点到“初始”,Cauchy hypersurface和该锥体与初始hypersurface的相交的“初始cauchy hypersurface”,从过去的光锥上呈现标量的表达。其次,我们获得了与三个准局部相关时间样的保形杀害和一个近似杀伤载体场相关的能量的先验估计。利用这些与物理应力 - 能量张量和积分方程相关的自然定义的能量,我们表明,标量场的时空L∞规范在初始数据方面保持界定,并且只要空间时空保持奇异/cauchy-horizon notimulition/cauchy-horizon nove the the n of tim to n of。
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示
摘要。准局部能量问题已得到广泛研究,主要在四维空间中。本文我们报告了关于时空维度 n ≥ 4 中准局部能量的结果。在适当的假设下将三种不同的准局部能量定义推广到更高维度后,我们评估了它们沿光锥切口向光锥顶点收缩的小球极限。真空中的结果可以方便地用 Weyl 张量的电磁分解来表示。我们发现,物质存在时的极限会产生预期的应力张量,但真空极限通常与维度 n > 4 中的 Bel-Robinson 超能量 Q 不成比例。结果定义了 Bel-Robinson 超能量在更高维度中表征引力能量的作用,尽管它具有独特的概括性。令人惊讶的是,霍金能量和 Brown-York 能量在所有维度上的小球极限上完全一致。然而,“新”真空极限 Q 不能解释为引力能量,因为它不为正。此外,我们还给出了高维 Kijowski-Epp-Liu-Yau 型能量的小球极限,并且我们再次看到 Q 代替了 Q 。我们的工作扩展了早期对小球极限的研究 [ 1 , 2 , 3 , 4 ],也补充了 [ 5 ]。
1. 我将证明在 2100 年之前,人类水平的人工智能 (HLAI) 有很大的可能性出现;2. 如果是 HLAI,那么很可能超级智能 (SI) 将通过智能爆炸 (IntExp) 随之而来;3. 因此,人工智能将驱动生产力爆炸式增长 4. 不受控制的 IntExp 可能会摧毁我们珍视的一切,但受控的 IntExp 将极大地造福生活 - 塑造我们未来的光锥。
我们发现了测量引起的相变的局部序参量:最初与系统纠缠的单个参考量子比特的平均熵。利用这个序参量,我们确定了可立即应用于高级量子计算平台的测量引起的临界性的可扩展探针。我们在 1 + 1 维稳定器电路模型上测试了我们的建议,该模型可以在多项式时间内进行经典模拟。我们引入了“解码光锥”的概念来建立此探针的局部和有效可测性。我们还估计了转变的体积和表面临界指数。在更一般的模型中开发测量引起的临界性的可扩展探针可能是嘈杂的中尺度量子设备的有用应用,并指向更高效的容错量子计算实现。
图1:IBM设备的速度和纠缠肾熵。(a)在量子淬灭的情况下,在tfim的两个扭结子空间内的域壁位置的实时动力学,没有和额外的纵向范围H z。在这里,l = 101,h x = 0。5,初始状态是铁磁性的,中间有单个旋转旋转。对于H Z = 0,可以看到游离颗粒的光锥结构。对于固定情况,H z = 0可观察到两个速度,初始速度(虚线)等于自由情况,并且在更长的时间内等于介子速度(实心)。(b)在IBM量子计算机上测量的两个速度的比较(h x = 0。5和l = 9)在缓解错误后,根据理论上的预测。显示的错误条是获得的一系列速度的标准偏差,在供应材料中提供了更多详细信息。(c)从全局量子淬灭到TFIM后的一半链二阶R´enyi熵的随机测量数据中的数据,其在状态L