作为当前项目省电探索的一部分,研究了光耦合器的替代品用于电流隔离。项目使用了大约 75 个电流隔离器,工作条件为 DC 至 1.2 Mbps。如果使用光隔离器,功耗将超过 10 瓦,还可能导致辐射引起的性能下降 [1]。为了降低功耗,对来自三家不同制造商的非光隔离器进行了评估。这种省电方式将使隔离器的总功耗从大约 10 瓦降低到不到 2 瓦。该项目的辐射要求规定,所选部件在 LET 低于 60 MeV·cm 2 /mg 时不得出现破坏性的单粒子闩锁 (SEL) 等破坏性单粒子。因此,它们最初在 NRL 的脉冲激光 SEE 测试设备上进行了破坏性 SEE 筛查。同时,还对部件进行了单粒子翻转 (SEU) 测试。经测试的三个部件中,有一个部件对 SEL 免疫,SEU 很少。该部件的重离子测试在加州大学劳伦斯伯克利分校实验室 (LBL) 88 英寸回旋加速器上进行,并证实了脉冲激光测试结果。最后,还在 NRL 的 Co 60 室中使用伽马射线对这些部件进行了总电离剂量 (TID) 测试,结果发现其可承受 50 krad(Si) 的辐射。
可靠性零件数量故障率数据系统:Airborne Direct 串行/以太网第 1 页组装:Airborne Direct 串行顶级组装零件清单:18D3704-01 环境:地面,移动 (GM) -------------------------------------------------------------------------------------------------- | | | | | 故障率,单位:| | | | | | | 每百万小时零件数 | | 描述/ | 规格/ | 数量 | 质量 |-------------------------| | 通用零件类型 | 质量水平 | | 因素 | | | | | | | (Pi Q) | 通用 | 总计 | | | | | | | | | |=========================|================|================|================|==============|=============|集成电路/ | 商用 | 1 | 1.00 | 0.04500 | 0.04500 | | MOS,数字 | II | | | | | | 101-1000 门 | | | | | | | | | | | | | | 集成电路/|商业 | 2 | 1.00 | 0.03900 | 0.07800 | | MOS,线性 | II | | | | | | | 1-100 晶体管 | | | | | | | | | | | | | | | | 集成电路/|商业 | 1 | 1.00 | 0.11000 | 0.11000 | | MOS,线性 | II | | | | | | 301-1K 晶体管 | | | | | | | | | | | | | | | | 集成电路/|商业 | 1 | 1.00 | 0.03500 | 0.03500 | | MOS,PLA | II | | | | | | 1-16K 门 | | | | | | | | | | | | | | 二极管/ | 商用 | 1 | 1.00 | 0.04000 | 0.04000 | | 瞬态抑制器| II | | | | | | | 压敏电阻 | | | | | | | | | | | | | | | 光电/ | 商用 | 3 | 1.00 | 0.31000 | 0.93000 | | 光隔离器 | II | | | | | | | | | | | | | | | | | | | | | | 电阻器/RM | 商用 | 29 | 1.00 | 0.07000 | 2.03000 | | 固定 F
1. 通过微转移印刷将 O 波段 InP 蚀刻面激光器边缘耦合到 SOI 上的聚合物波导,载于 IEEE 量子电子学杂志,2020 年 2. R. Loi 等人,“硅光子学基板上的电子集成电路微转移印刷”,载于 ECIO 2022 会议。2022 年 5 月。 3. 欧盟热门项目 4. 利用微转移印刷实现氮化硅上 VCSEL 光子集成电路。”Optica 8.12 (2021): 1573-1580。 5. 通过转移印刷在硅上实现低功耗光互连,用于光隔离器。”Journal of Physics D: Applied Physics 52.6 (2018)。 6. 将高效 GaAs 光伏电池微转移印刷到硅上以实现无线电源应用。”《先进材料技术》5.8(2020):2000048。
1. 通过微转移印刷将 O 波段 InP 蚀刻面激光器边缘耦合到 SOI 上的聚合物波导,载于 IEEE 量子电子学杂志,2020 年 2. R. Loi 等人,“硅光子学基板上的电子集成电路微转移印刷”,载于 ECIO 2022 会议。2022 年 5 月。 3. 欧盟热门项目 4. 利用微转移印刷实现氮化硅上 VCSEL 光子集成电路。”Optica 8.12 (2021): 1573-1580。 5. 通过转移印刷在硅上实现低功耗光互连以用于光隔离器。”Journal of Physics D: Applied Physics 52.6 (2018)。 6. 将高效 GaAs 光伏电池微转移印刷到硅上以实现无线电源应用。”先进材料技术 5.8 (2020): 2000048。
AGL 高于地面 AOI 感兴趣区域 ARF 即将起飞 ATC 空中交通管制 BEC 电池消除电路 B-VLOS 超视距 CAA 民航局 CHDK Canon Hack 开发套件 CMOS 互补金属氧化物半导体 CW 顺时针 CCW 逆时针 DSM 数字表面模型 DJI 大疆创新 ESC 电子速度控制器 FL 飞行高度 FLIR 前视红外雷达 FPV 第一人称视角 GIS 地理信息系统 GPS 全球定位系统 GNSS 全球导航卫星系统 IATA 国际航空运输协会 ICAO 国际民用航空组织 KAP 风筝航空摄影 LiDAR 光检测和测距 LiPo 锂聚合物 LRS 远程系统 MP 百万像素 NATS 国家空中交通服务 NDVI 归一化差异植被指数 NGO 非政府组织 NOTAM 飞行员通知 OPTO 光隔离器 OSD 屏幕显示 PfAW 空中作业许可 PNP 即插即用 PPK后处理运动学 RC 无线电控制 RGB 红色、绿色、蓝色 RPAS 遥控飞机系统 RTF 准备飞行 RTH 返回家园 RTK 实时运动学 RTL 返回发射 SfM-MVS 运动结构多视角立体 TLS 地面激光扫描仪 TOW 起飞重量 UAV 无人驾驶飞行器 UTM 无人驾驶飞机系统交通管理 VFR 目视飞行规则 VLOS 视觉视线
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。