继 [1] 的工作之后,我们定义了一个边界区域 B 的广义协变最大纠缠楔,我们推测它是可从 B 重构的本体区域。类似地,我们定义了一个协变最小纠缠楔,我们推测它是可以影响 B 上的状态的本体区域。我们证明了最小和最大纠缠楔遵循此猜想所必需的各种属性,例如嵌套、包含因果楔以及在适当的特殊情况下简化为通常的量子极值表面处方。这些证明依赖于我们推测成立的(受限)量子聚焦猜想 (QFC) 的一次性版本。我们认为这些 QFC 意味着一次性广义第二定律 (GSL) 和量子布索界限。此外,在特定的半经典极限中,我们使用代数技术直接证明了这个一次性 GSL。最后,为了推导出我们的结果,我们将一次性量子香农理论和状态特定重建的框架扩展到有限维冯诺依曼代数,允许非平凡中心。
理论物理学中尚未解决的主要问题之一是将粒子物理学的标准模型与爱因斯坦的引力理论统一起来。与此密切相关的另一个问题是黑洞的微观量子描述。根据贝肯斯坦著名的公式,黑洞的经典熵等于其视界的表面积(以普朗克单位表示)。在量子描述中,该熵应与黑洞不同量子态数量的对数成正比。由于黑洞熵的尺度与边界面积而非体积相似,因此这表明黑洞具有全息描述。马尔达西那的 AdS/CFT 猜想是该方向的重大突破,它将 D 维的经典引力系统与 D-1 维的强耦合规范理论联系起来。这种全息规范-引力对偶性激发了一种全新的统一问题和相关黑洞量子物理学方法。本课程通过量子多体系统、量子场论和量子信息科学的视角,提供基于问题解决的全息术简介。其目的是加深对理论物理学中最重要的发展之一的基础知识的理解,并提高研究技能。
全息图是一种基石表征和成像技术,可以应用于从X射线到无线电波甚至中子等颗粒的完整电磁频谱。所有这些全息方法中的关键特性是通过干扰参考光束来提取相信息所需的连贯性 - 没有此,全息摄影是不可能的。在这里,我们介绍了一种基于本质上不连贯和非极化的光束的全息成像方法,因此可以从经典的干扰测量中提取任何相信息。相反,全息信息是按照纠缠状态的二阶相干性编码的。使用空间偏振超倾斜光子对,我们远程重建复杂物体的相位图像。信息被编码为纠缠状态的极化程度,使我们能够通过动态相位障碍,甚至在存在强经典噪声的情况下进行图像,并且与经典相干全息系统相比,空间分辨率增强。超出成像,量子全息量量化了10 4
3街至2025年2月14日在伦敦帝国帝国学院伦敦帝国帝国学院,数据科学学院始终在世界上最好的大学(欧洲第1街,在世界第2届,在世界第2届)中,根据QS World University排名2025),伦敦帝国学院是一家以科学为基础的机构。帝国吸引了来自126多个不同国家的22,000多名学生和8,000名最高国际素质的员工。自1907年基础以来,帝国对社会的贡献包括发现青霉素,全息摄影和光纤基础。对研究的应用的这种承诺今天仍在继续,当前的重点领域包括跨学科的合作,以改善全球健康,应对气候变化,发展可持续的能源,解决安全挑战,提高数据管理和分析技术,以支持数据驱动数据驱动的研究以及以分子规模解决问题。Imperial在扩展学习研究所内的持续专业发展部门在为国际本科生的冬季和暑期学校开发和运营方面拥有广泛的经验。我们借鉴了帝国的教育教育学,以设计和提供为学生提供引人入胜的学习经验的计划,并结合旨在评估学生学习成果的小组项目。
黑洞是宇宙中最神秘的物体之一,但原则上人们对其了解甚少。从根本上理解黑洞及其视界需要将量子力学与广义相对论统一起来,这已被证明是一个非常困难的问题。在本课程中,我们将开发量子黑洞理论的各个方面。从对经典广义相对论中黑洞的彻底分析开始,我们介绍物质场的量子方面,并探索霍金和 Unruh 辐射,从而导致贝肯斯坦-霍金熵和臭名昭著的黑洞信息悖论。理解这两者需要超越经典引力。本课程概述了量子引力方法(例如弦理论)并强调了其中的困难。在最后一章中,本课程探讨了最近关于完全可解的低维量子引力模型的主题。特别是,Jackiw-Teitelboim (JT) 2d 伸缩子引力描述了高维黑洞物理学的近视界近极值状态。此外,学生将进行一个研究项目(以小组形式),并向同学们展示和解释这个令人兴奋的研究领域的一个主题,例如引力冲击波、黑洞膜范式、广义第二定律、量子JT引力、低维引力中的欧几里得虫洞......本课程是对每隔一年提供的“全息摄影”课程的补充。