摘要:光学超表面能够操纵超薄层中的光与物质的相互作用。与金属或电介质超表面相比,由电介质和金属纳米结构组合而成的混合超表面可以为系统中存在的模式之间的相互作用提供更多可能性。在这里,我们研究了通过单步纳米制造工艺获得的混合金属-电介质超表面中晶格共振之间的相互作用。有限差分时域模拟表明,在选定的几何参数发生变化时,Ge 内部波长相关吸收率中出现的模式避免交叉,这是强光耦合的证据。我们发现测量和模拟的吸收率和反射光谱之间具有良好的一致性。我们的超表面设计可以轻松纳入自上而下的光电器件制造工艺,可能的应用范围从片上光谱到传感。关键词:超材料、半导体、杂化、光电子学
一家大学医学成像多伦多,彼得·蒙克心脏中心,多伦多综合医院,多伦多大学,多伦多,多伦多,加拿大b华盛顿大学,美国华盛顿大学,c心脏病学,斯特伦博斯大学,南非D罗马大学,意大利G Radboud大学医学中心,荷兰N安特卫普大学医院和比利时安特卫普大学,放射学,圣心lier,比利时J医院巴罗斯·卢科·特鲁多 - 临床圣玛丽亚,圣地亚哥,圣地亚哥,智利K心血管成像部,美国德克萨斯州休斯顿,美国纽约大学 - 纽约大学,美国纽约,美国纽约州纽约市,美国,美国,美国,美国,美国纽约州纽约大学,美国,美国纽约州医学院,boston儿童医院,brigham and brigham and Hospition,brofam birov nimak of brove and boston boston,美国,美国,美国,美国。英国伦敦皇后大学伦敦皇后大学o英国心血管成像教授,英国利兹大学,英国
假设电子坐标是独立于核坐标扩张的,则可以使用复合尺度方法来计算出生 - 脑海体近似内的分子共振。使用这种方法,将计算非铁官哈密顿量的复杂能量,其实际部分与共振位置和虚构部分有关,是寿命的倒数。在这项研究中,我们提出了模拟量子计算机上共振的技术。首先,我们将缩放的分子哈密顿量转化为第二量化,然后使用约旦 - 王室转换将缩放的哈密顿量转化为Qubit空间。为了获得复杂的特征值,我们引入了直接的测量方法,该方法用于获得简单的一维模型电位的共振,该模型具有与二离子分子相似的预隔离共振。最后,我们应用了该方法来模拟H -2分子的共振。IBM Qiskit模拟器和IBM量子计算机的数值结果验证了我们的技术。
摘要:在光学纳米结构的连续体(BIC)中发现结合状态已引起了重大的研究兴趣,并发现了光学领域的广泛应用,从而导致了实现High-Q(质量)FANO共振的有吸引力的方法。在此,通过有限元方法(FEM)设计和分析了由MGF 2底物上的四个磷化物(GAP)圆柱组成的全dielectric跨表面。通过打破平面的对称性,特别是通过将两个圆柱体移动到一侧,可以实现从对称性保护的BIC到Quasi-BIC的过渡。此转变使尖锐的双波段FANO共振在1,045.4 nm和1,139.6 nm的波长下激发,最大Q因子分别达到1.47×10 4和1.28×10 4。多极分解和近场分布表明,这两个QBIC由电动四极杆(EQ)和磁四极杆(MQ)主导。此外,可以通过更改入射光的极化方向来实现双向光学切换。结果,优点(FOM)的最大灵敏度和数字为488.9 nm/riU和2.51×10 5
机械振动的色散限制了纳米光机械调制。在这项工作中,我们提出了一种利用弹性局部共振(也称为回音壁模式 (WGM))的光机械调制。我们发现我们的结构支持两个四极和两个六极弹性 WGM,它们是非色散的,以避免位移场局域在金纳米盘 (AuND) 上时产生损耗。我们通过数值证明局域表面等离子体共振 (LSPR) 和 WGM 之间的耦合与弹性模式的对称位移和 AuND 中声子模式的强隔离有关。通过计算四个 WGM 在不同变形下偶极 LSPR 的波长偏移来评估调制的幅度。对这四个 WGM 进行详细比较使我们能够确定耦合效率更高的 WGM。此外,这种同时限制产生了大的声-等离子体耦合,可用于设计具有等离子体响应的新型机械传感器,作为新型声-等离子体装置的潜在应用和创新。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
左心室肿块是心血管事件的风险标志,可能表明潜在的心肌病。心脏磁共振是用于左心室质量估计的金色标准,但在大规模上获得挑战。在这里,我们使用深度学习来使全基因组的关联研究对心脏磁共振衍生的左心室质量索引,这些左心室质量指向43,230英国生物库参与者的身体表面积。我们确定了12个基因组广泛的关联(TTN中有1个,左心室质量为11个小说),这意味着先前与心脏收缩和心脏病相关的基因。心脏磁共振衍生的左心室质量与入射膨胀和肥厚性心肌病有关,以及植入的心脏扭曲纤维植入物。An indexed left ventricular mass polygenic risk score ≥ 90 th percentile is also associated with incident implantable cardioverter-de fi brillator implant in separate UK Biobank (hazard ratio 1.22, 95% CI 1.05-1.44) and Mass General Brigham (hazard ratio 1.75, 95% CI 1.12-2.74) samples.在这里,我们对心脏磁共振衍生的左心室质量进行了全基因组的关联研究,以识别11种新型变体,并证明心脏磁共振衍生和遗传性预测的索引左心室肿块与入射心肌病有关。
背景与目标:磁共振胆管造影术(MRCP)用于评估胆道疾病的目前依赖于主观评估,因为缺乏定量指标,预后价值有限。人工智能启用的定量MRCP(MRCP+)是一种新技术,可分割胆道解剖结构并提供定量的胆道度量标准。这项研究调查了MRCP+作为预测原发性硬化性胆管炎(PSC)临床结果的预后工具的实用性。方法:使用MRCP+软件对PSC患者的MRCP图像进行了后处理。计算了MRCP与临床事件(肝移植或死亡)之间的持续时间。生存分析和逐步的COX回归进行了研究,以研究MRCP+指标的最佳组合以预测临床结果。所产生的风险评分在单独的验证队列中得到了验证,并将其与现有的预后分数(Mayo风险评分)进行了比较。结果:在这项回顾性研究中,培训队列中包括102名患者,另外50名患者形成了验证队列。在两个队列之间,有34例患者在3年的中间持续时间(23例肝移植和11例死亡)中发展出临床结局。直径为3 - 5 mm的胆管的比例,总胆红素和天冬氨酸氨基转移酶与无移植生存率独立相关。这优于梅奥风险评分。有必要进行前瞻性研究来评估这种新型预后工具的临床实用性。©2023作者。合并为风险评分,MRCP+风险评分(M+ BA)的总体判别性能非常出色。接收器操作员曲线下的面积为0.86(95%CI:0.77,0.95),以预测验证队列中的临床结果,危险比为5.8(95%CI:1.5,22.1)。结论:将MRCP+与总胆红素和天冬氨酸氨基转移酶(M+ BA)结合的综合评分识别出具有肝移植或死亡的高风险的PSC患者。影响和影响:原发性硬化症胆管炎(PSC)是胆道树的一种疾病,在该疾病中,肿瘤和纤维化会导致胆道导致肝衰竭和/或癌症(胆管癌)的胆道狭窄(狭窄)和膨胀(扩张)的区域。在这项研究中,我们证明了对胆道树的定量评估可以更好地识别患有PSC的患者,而PSC患者的死亡或肝移植高风险高于当前的血液风险评分(Mayo风险评分)。由Elsevier B.V.代表欧洲肝脏研究协会(EASL)出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
纳米级的光 - 物质相互作用的精确控制位于纳米光子学的核心。但是,由于相应的电磁近场通常限制在传统光学显微镜分辨率以下的体积之内,因此在此长度尺度上进行的实验检查是具有挑战性的。在半导体纳米型电磁场中进一步限制在各个亚波长谐振器的范围内,从而限制了这些结构中关键光 - 物质相互作用的访问。在这项工作中,我们证明了光电子发射显微镜(PEEM)可用于分辨近场光谱的极化以及受损坏对称性硅元素支撑的电磁共振的成像。我们发现,通过原位钾表面层启用的光发射结果与可见和近红外波长之间的全波模拟和远场反射测量一致。此外,我们发现了跨场阵列边缘附近的集体共振的偏振相关演变,利用了PEEM的远场激发和全场成像。在这里,我们推断出八个谐振器或更多之间的耦合建立了此元图的集体激发。总而言之,我们证明了高光谱的高光谱成像和PEEM的远场照明可以利用半导体纳米光子结构中的集体,非本地,光学共振的计量学。