lmb具有锂金属作为阳极的LMB有望达到高达500 WH kg-1的高能密度。但是,商用电解质系统与锂金属和电解质之间的反应性高的锂阳极不兼容。此外,高波动性,强烈的易燃性和较差的热稳定性对LMB构成了安全威胁。因此,电解质系统在确保LMB的电化学性能和安全性方面起着至关重要的作用。开发具有较高界面稳定性的内在安全电解质系统最近是LMB的研究热点。非易易易受电解质系统,例如固态电解质,(局部)高浓度电解质,离子液体(IL)电解质(IL)电解质和共晶电解质,以提高LMB的安全性和可靠性[1]。
Since the discovery of optical nonlinearities in the 1960s, lithium niobate (LiNbO 3 , or LN) has been the most widely used second-order ( χ (2) ) material, with applications ranging from nonlinear wavelength conversion for classical and quantum light source [1], optical modulators for data communications [2], as well as surface acoustic wave (SAW) based electronic components for mobile phone industry [3]。与其他常见的光子材料相比,LN在非线性和线性光学方面具有许多有利的特性。LN中最大的χ(2)张量分量是对角线对齐的(χ(2)ZZZ),对于非线性波长转换(称为D 33)和电仪调制(r 33),对于非线性波长转换(称为D 33)。作为线性光学材料,LN具有相对较高的普通和非凡的折射率(N O = 2.21,N E = 2.14,在1550 nm处),并且高度
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
摘要:电力系统中长期愿景及其形态演化分析是引领电力行业发展的重要先导性研究,尤其在我国提出2060年实现温室气体净零排放的新目标下,如何加快发展可再生能源成为新的关注点。本文尝试从灵活性平衡的视角探究含高比例可再生能源的未来电力系统形态演化指标。在回顾国际上关于未来电力系统发展愿景相关文献的基础上,总结了未来电网的特征及其驱动力的变化,并提出了一种全局敏感性分析方法。考虑到影响演化路径的多重不确定性因素,抽取大样本模拟电力系统演化,并以西北电网为例,分析了我国高比例可再生能源的演化路径。
来源:https://www.aeroreport.de/en/artikel/ werkstoffentwicklung-fuer-die-luftfahrt 航空部件应用示例
预计将开发具有高能量密度和高安全性的全稳态电池(ASSB)。使用高容量负电极(例如锂金属和硅)以及高容量的正极电极(例如基于硫基于硫的氧化物和富含Li的氧化物材料)的主要挑战是,正和负电极的活性材料在充电和排放期间经历较大的体积变化。在该项目中,将开发适合这些高容量电极的机械性能,电化学稳定性和离子电导率的固体电解质。我们还专注于界面设计,以形成和维护电极和电解质,电池制造过程之间的固体界面以及高级分析和计算方法,以阐明循环过程中界面处发生的机制。该图显示了使用基于硫的阳性电极和晚期阳性液体使用富含Li的氧化物阳性电极的发育目标。我们将建立基本技术,以加速具有高能量密度和高安全性的Assb的商业化,并在将来实现GX。
Ladics,G.S。,Selgrade,M.K.,2009。Identifying Food Proteins with Allergenic Potential: Evolution of Approaches to Safety Assessment and Research to Provide Additional Tools.调节毒理学和药理学54,S2 – S6。https://doi.org/10.1016/j.yrtph.2008.10.010
Navigating the Supply-Demand Dynamics ..................................................................................................................... 13 Unraveling Geopolitical Influences................................................................................................................................. 14 Breaking Down Technological Developments ...................................................................................................................................................................................................................................................................................................................................................................