开发了用于激发和记录厚度 h S 300 ÷ 500∙10 3 纳米和直径 D 60 ÷ 100∙10 – 3 米的 SiO 2 /Si 圆盘状晶片中的阻尼弯曲共振的方法、设计和制造了用于测量结构敏感内耗 (IF) Q – 1 的装置。开发了用于无损检测圆盘状半导体基板中结构缺陷积分密度 nd 和破损层深度 h bl 的技术。通过测量谐波频率 f 0 、f 2 下的 IF 背景 Q – 1 0,可以通过实验确定振动圆盘的节点线。这样就可以对寻找这些节点线的理论计算进行修正,同时考虑到圆盘的线性尺寸及其连接方法。研究了 X 射线和电子辐照 SiO 2 /Si 盘状晶片板后的温度中频谱 Q – 1 ( Т )。结果发现,在测量过程中,Si 结构缺陷的退火会改变温度中频谱 Q – 1 ( Т ) 的形状。在以速度 V Δ T/ Δ t ≤ 0.1 K/с 加热 SiO 2 /Si 晶片板时,可以观察到由点缺陷形成的中频峰 Q – 1 M 。这使得能够确定辐射缺陷各向异性复合体重新取向的活化能 H 。通过建立中频背景参数 Q – 1 0 的稳定性,可以确定半导体晶片板及其基于的器件的抗辐射性。所提出的方法可用作控制微电子用半导体晶片板晶体结构缺陷的无损方法。
宫颈脊柱骨髓病(CSM)是一种慢性压缩脊髓病变(Rao,2002; McCormick等,2003)。这是成年人中最常见的脊髓损伤形式,尤其是在老年患者中(McCormick等,2020)。在产生不可逆的脊髓损伤之前识别早期症状并提供有效的治疗非常重要(Edwards等,2003)。磁共振图像(MRI)通过可视化脊髓压缩的解剖学范围和脊髓内耗尽信号的变化而广泛用于CSM诊断(Takahashi等,1987; Al-Mefty等,1988; Ramanauskas et al。 1993; Shabani等人,2019年)。常规MRI通常包括T1和T2加权图像(T1WI和T2WI),可以提供椎骨,脊髓和周围软组织的高分辨率图像(Harkins等,2016)。然而,T1和T2信号强度的改变仍然限制了CSM早期阶段的诊断(Karpova等,2010)。需要一种敏感且可重复的成像技术来早期诊断和定量脊髓压缩。定量MRI可能是一种选择,因为T1映射显示了临床潜力(Maier等,2019; Maier等,2020),而T2和Proton密度(PD)映射很少有报道。合成MRI可以提供定量映射,包括T1,T2和PD映射以及多种对比度加权成像,例如T1-,T2加权图像,同时(Warntjes等,2008)。合成MRI技术已在许多区域广泛使用,并且在大脑,骨骼,骨骼,乳房,前列腺和腰椎椎间盘变性中表现出良好的诊断性能(Hagiwara等,2017; Cui et al。,2020; liu et al。据我们所知,CSM患者没有合成MRI的应用。因此,我们的研究旨在探索