密度并促进锂离子在电极之间的传输,从而降低降解和故障率。2 多孔电极结构以及电极涂层的物理、机械和电化学性能对于保持 LIBs 的良好一致性极为重要。电极的物理化学性质由混合、涂层,最重要的是干燥和随后的压延工艺控制,而这又与干燥过程 (DP) 期间的各种参数/变量有关。3 – 5 三阶段干燥机制如图 1 所示。众所周知,温度在 DP 中起着重要作用,是影响干燥速率的关键参数。例如,高温会导致粘合剂迁移(通常迁移到上部自由表面),从而降低涂层和集流体 (CC) 之间的粘合强度。这可能导致涂层与 CC 分层、电极收缩和涂层成分偏析; 7 – 10 这反过来又会通过较差的粘附性和内聚性增加电极的内阻 7,11 并降低电池容量。12
自 20 世纪 50 年代以来,全球已生产了 83 亿吨 (Bt) 原生塑料,其中约 5 Bt 已作为废物堆积在海洋和其他自然环境中,对整个生态系统构成严重威胁。显然,我们需要可持续的生物基替代品来替代传统的石油衍生塑料。迄今为止,由未加工的生物材料制成的生物塑料存在异质和非内聚性形态的问题,这导致其机械性能较弱且缺乏可加工性,阻碍了其工业化应用。本文介绍了一种快速、简单且可扩展的工艺,可将原始微藻转化为自粘合、可回收、可在家庭堆肥的生物塑料,其机械性能优于其他生物基塑料(如热塑性淀粉)。经过热压,数量众多且具有光合作用的藻类螺旋藻会形成具有黏性的生物塑料,其弯曲模量和强度分别在 3-5 GPa 和 25.5-57 MPa 范围内,具体取决于预处理条件和纳米填料的添加。这些生物塑料的可加工性以及自熄性使其成为消费塑料的有希望的候选材料。机械回收和土壤中的快速生物降解被证明是报废选项。最后,从全球变暖潜力的角度讨论了环境影响,强调了使用螺旋藻等碳负性原料制造塑料的好处。