以快速前往火星为设计目标,探索定向能应用于航天器任务设计。随着光子激光技术的不断发展,预计将实现前所未有的尺寸(直径 10 米)和功率(100 兆瓦)的地球激光阵列。这种尺寸的相控阵激光器结合大气补偿,能够将激光功率传送到地月空间的航天器,入射激光通过充气反射器聚焦到氢加热室中。然后,氢推进剂通过喷嘴排出,实现 3000 秒的比冲。该架构可通过回燃机动立即重复使用,以返回推进装置,同时仍在地球激光的射程范围内。能够承受更大的激光通量,从而实现高推力和高比冲的组合,与激光电推进相比,这种方法更具优势,并且占用的参数空间类似于气芯核热火箭(无需反应堆)。加热室及其相关的再生冷却和推进剂处理系统是设计的关键要素,在本研究中受到特别关注。还详细分析了经过 45 天的飞行后到达火星所需的天体动力学和极端空气捕获机动。讨论了激光热推进作为太阳系及其他地区其他快速飞行任务的有利技术的应用。
1942 年 2 月,GALCIT 项目的首席工程师弗兰克·马利纳 (Frank Malina) 参观了位于马里兰州安纳波利斯的海军工程实验站。二战爆发后,海军强迫罗伯特·戈达德为他们工作,并将他派驻到工程实验站。负责实验的官员是本土火箭专家罗伯特·特鲁阿克斯 (Robert Truax)。特鲁阿克斯在加利福尼亚州阿拉米达长大,读过《大众机械》;在高中的一项项目中,他设计了一种再生冷却火箭发动机(即使用燃料来冷却发动机)。1937 年和 1938 年,在海军学院,他让学院的机械师允许他用废料实际制造它。特鲁阿克斯于 1938 年 9 月在工程实验站对其进行了测试,并于 12 月在美国火箭协会的测试台上对其进行了测试。当马利纳参观时,特鲁阿克斯和戈达德正在为海军的 PBY Catalina 飞行艇研制 JATO 发动机。
火箭发动机的再生冷却结构承受着极大的负荷。负荷是由热燃烧气体(CH4/OX 约为 3500 K)和冷冷却通道流(LCH4 约为 100 K)相互作用引起的,这导致结构中存在较大的温度梯度和高温(铜合金最高可达 1000 K 左右),同时两种流体之间存在较高的压力差。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流,以及它们的相互作用,特别是结构的寿命。自 20 世纪 70 年代以来,已经对燃烧室结构进行了一些寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室 [1] 的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳。在小尺寸燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的室内压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量均未
火箭发动机的再生冷却结构承受着极大的载荷。载荷是由热燃烧气体(对于 CH4/OX 约为 3500 K)和冷冷却通道流(对于 LCH4 约为 100 K)相互作用引起的,这导致结构中出现大的温度梯度和高温(对于铜合金最高可达 1000 K 左右),同时两种流体之间的压差也很大。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流以及它们之间的相互作用,特别是结构的寿命。自 1970 年代以来,已经进行了一些燃烧室结构的寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳 [1]。在微型燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的腔室压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量
NASA MARSHALL太空飞行中心(MSFC)自2010年以来在液体火箭发动机组件设计,开发和测试中应用了各种形式的金属添加剂制造(AM)。这些AM技术降低了硬件成本,缩短制造时间表,通过减少关节数量来提高可靠性,并通过允许非常规设计来改善硬件性能。RAMFIRE项目,由太空技术任务局(STMD)游戏更改开发(GCD)计划资助,已与Elementum 3D合作进一步使用了新颖的AM Liquid Rocket喷嘴。该项目高级新型大型AM铝材料技术,可在火箭发动机和发射车中节省大量重量。以前,铝合金难以使用增材制造焊接和打印。Ementimum 3D的专利铝6061-RAM2合金允许使用各种AM技术和各种尺度打印铝合金。可以利用合金用于焊接线,显示出铝焊缝的急剧改善。The RAMFIRE project focuses on five key areas: 1) Laser Powder Directed Energy Deposition (LP-DED) AL6061-RAM2 feedstock specification and verification, 2) LP-DED process development and validation, 3) LP-DED printed AL6061-RAM2 microstructural and mechanical property characterization, 4) Hot-fire test a 5.4k-lbf thrust class regeneratively cooled nozzle, 5) Print large scale再生冷却喷嘴。热火测试通过提供相关环境将TRL级别提高到5/6范围,从而向NASA和潜在用户展示了高级空间技术的潜力。
再生冷却或倾倒冷却喷嘴是热气体膨胀的关键部件,可实现液体火箭发动机系统的高温和性能。再生冷却通道壁喷嘴是整个推进行业使用的一种设计解决方案,是一种制造带有内部冷却液通道的喷嘴结构的简化方法。通道壁喷嘴 (CWN) 设计的规模和复杂性可能给制造带来挑战,从而延长交货时间并提高成本。其中一些挑战包括:1) 独特且耐高温的材料,2) 在制造和组装过程中对大型零件的严格公差以容纳高压推进剂,3) 薄壁特征以保持足够的壁温,以及 4) 独特的制造工艺操作和复杂的工具。美国国家航空航天局 (NASA) 和美国专业制造供应商正在完善现代制造技术,以降低复杂性并降低与通道壁喷嘴制造技术相关的成本。增材制造 (AM) 是正在评估的通道壁喷嘴关键技术进步之一。推进部件的增材制造大部分集中在激光粉末床熔合 (L-PBF) 上,但目前还无法将其规模化应用于大型喷嘴。NASA 正在开发用于喷嘴的定向能量沉积 (DED) 技术,包括基于电弧的沉积、吹粉沉积和激光丝直接封堵 (LWDC)。目前考虑采用不同的方法来制造喷嘴,并且每种 DED 工艺都提供独特的工艺步骤以实现快速制造。基于电弧和吹粉沉积的技术用于形成 CWN 衬套。正在展示各种材料,包括 Inconel 625、Haynes 230、JBK-75 和 NASA HR-1。吹粉 DED 工艺也正在展示如何在类似材料中通过一次操作形成整体通道喷嘴。LWDC 工艺是一种使用局部激光丝沉积技术封堵衬套内通道并形成结构夹套的方法。除了双金属收尾材料(C-18150 - SS347 和 C-18150 - Inconel 625)外,该工艺还使用了上述相同的材料。NASA 已完成对各种通道壁喷嘴制造技术的工艺开发、材料特性和热火测试。本出版物概述了正在评估的各种通道壁喷嘴制造工艺和材料,包括热火测试的结果。还讨论了与通道壁喷嘴制造相关的未来发展和技术重点领域。
• 电气与计算机工程:VLSI 设计、可再生能源系统和智能电网、电力电子和电力驱动、无传感器电力驱动、电动汽车、电动汽车充电、网络物理系统、电力电子系统的网络安全、燃料电池、混合储能系统、生物医学信号处理、生物识别和计算机视觉、超越 CMOS 的 VLSI 设计、无线通信、5G 和海量物联网、VLSI 中的机器学习、物理设计自动化算法、半导体器件、用于高频应用的高电子迁移率晶体管建模、用于低功耗逻辑实现的忆阻器逻辑、用于内存计算(IMC)的低功耗可靠存储器、用于空间应用的 SRAM、高性能感测放大器设计、用于无线通信的深度学习、无线电资源管理、MIMO 通信、非正交多址技术、PHY 和 MAC 层的优化、动态频谱接入、用于半导体应用的高 k 纳米材料的合成 • 化学:混合聚合物和纳米材料、响应性聚合物;用于储能应用的过渡金属氧化物和氮化物纳米结构的设计和合成;设计用于氢能的生物催化剂,用于柔性电子的二维材料•数学:数值分析;微分方程;偏微分方程分析;图像处理;随机控制;概率和统计;流体动力学;运筹学;工业和教育中的调度和时间表制定;有限群论;数值线性代数;和机器学习、金融数学•机械与航空航天工程:计算力学、理论固体力学、太阳能热能、制冷与空调、电池热管理、传热、微流体、生物流体动力学、生物力学建模与仿真、纳米材料、网络物理系统、先进制造系统、机器人、缆绳驱动机器人、外骨骼、外骨骼、无人机、钛合金 Ti6AI4V 板料成型、航空航天材料成型、轧制、航空航天材料制造过程模拟、增材制造、激光制造方法、增材制造的数值建模与仿真、先进精加工工艺等、智能制造、i4.0、工业工程、计算机辅助设计、湍流建模、燃烧建模、大涡模拟、直接数值模拟、湍流-化学相互作用、摩擦学、高超音速层流到湍流转变、采用氢和氢燃料的超燃冲压发动机推进、高速流动中的再生冷却、计算涡轮机械、高速反应和非反应流动中的 CFD 代码开发。