大气数值模型和再分析为各种应用生成了宝贵的天气和气候信息。其中,农业从所提供的数据中获得了相当大的附加值。这些数据允许创建情景和/或集合,以评估源自气候和植物生产方面的复合不确定性。在这项工作中,我们使用两种大气产品和 AquaCrop 模型来研究 2015 年夏季波河谷农业生产对气候条件以及作物类型和灌溉方法的影响和敏感性。这两个产品是一组使用天气研究和预报 (WRF-ARW) 模型的 3 公里分辨率免费模拟,用作灌溉用水需求的情景,以及 6 公里 COSMO-REA6 再分析,提供大气参考数据集。AquaCrop 模型仅强制使用波河谷的农田网格点,我们测试了作物模型对初始土壤水分、灌溉管理、土壤和作物类型等参数的敏感性。初步结果表明,对于小麦而言,产量反应取决于气象输入数据,COSMO-REA6 产量高于 WRF-ARW 产量,并且取决于土壤中的粘土含量。此外,AquaCrop 输出的物理集合(每日水通量、土壤水分和作物产量)将与哥白尼 2015 年的季节性预报产品进行比较
降雨量 (mm) 0 0 0 0 0 最高温度 ( ᵒ C) 30 30 30 29 29 最低温度 ( ᵒ C) 18 17 17 17 17 最大相对湿度 (%) 81 77 75 78 73 最小相对湿度 (%) 30 26 30 30 28 风速 (KMPH) 10 8 11 9 6 风向 (度) 77 93 117 120 115 云量 (Okta) 5 2 3 4 3 地区 04.01.2025 05.01.2025 06.01.2025 07.01.2025 08.01.2025
摘要:这项研究的目的是校准和验证仙人掌品种Opuntia stricta(Haw。)HAW,为了模拟农作物产量并使模型适用于半干旱区域中产量的模拟。Aquacrop Model 5.0具有四个模块,涵盖了与气候,农作物,灌溉和土壤有关的方面,这些模块是在Semiarid(INSA)的实验农场进行的一项实验中收集的数据,该实验位于位于PB Campina Grande City,PB,Mesoregion,Braz agraz的PB市政府。基于这些数据,进行了产量估计,观察水对作物产量的影响。为了验证模型,将在7和28天的灌溉频率下在田间获得的数据与Aquacrop模型估计的结果进行了比较。针对仙人掌品种Opuntia stricta(Haw。)HAW,对模拟生产率的令人满意的结果,使Aquacrop成为适用于模拟产量和对这些农作物水应力的响应的模型,这可以帮助生产者在其财产上的决策过程中为生产者提供帮助。
农业气象模型引入的机械农业学模型的建设物候仿真仿真干物质生产的数值方法应用于农业培养的生长增长建模潜在的生产力建模氮气建模氮限制现有模型
由于人为活性而增加的大气中温室气体(GHG)的浓度增加正在变暖。根据政府间气候变化(IPCC,2021)的浓度,温室气体的浓度持续增加,二氧化碳(CO2)的年平均每百万(PPM)的年平均值为410份(PPM),甲烷(CH4)的每十亿(PPB)零件(CH4)和332 ppb的每十亿(PPB),n nit.n n nit.n nit.n nit.n nit.n nit.n nit 该报告还表明,自1850- 1900年以来,人类活动中的温室气体排放量约为1.1°C的变暖,并发现在接下来的20年中平均全球温度预计将达到变暖的1.5°C。 在1.5°C的全球变暖中,将会增加热浪,更长的温暖季节和更短的寒冷季节。 在全球变暖的2°C下,极端热量通常会达到农业和健康的关键公差阈值。 升高的温室气体浓度的分歧影响是:a)气候变化的直接影响,b)气候变化的间接影响,c)与温室气体发射有关的非气候影响(Gornall等人 ,2010年)。 直接影响包括平均气候变化(较高的温度,变化的降水模式)以及气候变化和极端的增加(极端温度和热浪,该报告还表明,自1850- 1900年以来,人类活动中的温室气体排放量约为1.1°C的变暖,并发现在接下来的20年中平均全球温度预计将达到变暖的1.5°C。在1.5°C的全球变暖中,将会增加热浪,更长的温暖季节和更短的寒冷季节。在全球变暖的2°C下,极端热量通常会达到农业和健康的关键公差阈值。升高的温室气体浓度的分歧影响是:a)气候变化的直接影响,b)气候变化的间接影响,c)与温室气体发射有关的非气候影响(Gornall等人,2010年)。直接影响包括平均气候变化(较高的温度,变化的降水模式)以及气候变化和极端的增加(极端温度和热浪,
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。