日益加剧的气候波动威胁着世界粮食安全,因为这些是限制农业生产的非生物和生物胁迫的主要驱动因素(Rosenzweig 等人,2014 年)。非生物胁迫,例如过冷或过热、降水或干旱以及土壤盐分或钠化,是植物在应对气候变化时经历的一些最常见的胁迫类型(Ashraf 等人,2018 年;Barmukh 等人,2022 年;Soren 等人,2020 年;Varshney、Barmukh 等人,2021 年)。温度波动,尤其是极寒天气,可能导致小麦(Triticum aestivum)、水稻(Oryza sativa)和玉米(Zea mays L.)等主要谷类作物遭受寒害。这些作物要么天生不适应这种寒冷条件,要么没有专门为这种寒冷条件培育(Dolferus,2014;Janksa 等人,2010;Solanke 等人,2008)。在零度以下的条件下,细胞内或细胞外都会形成冰晶,生物膜通透性会发生变化,并产生活性氧 (ROS)。这些变化导致了一系列症状,例如发芽困难、幼苗活力下降或生长受阻、叶片变小、叶片变黄枯萎、分蘖减少、根系增殖不良、植物水分关系紊乱、养分吸收受阻、抽穗过早、种子败育增加、种子大小减小,从而导致产量下降 (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et al., 2015 ; Oliver et al., 2002 ; Wang et al., 2013 )。
摘要:已经提出了多种机制来解释次级冰的产生(SIP),并且已经认可SIP在形成云冰晶体中起着至关重要的作用。但是,大多数天气和气候模型都不考虑其云微物理方案中的SIP。在这项研究中,除了默认的rime分裂(RS)过程外,将超冷的雨/细雨滴(DS)和冰上的分解 - 冰碰撞 - 冰碰撞(BR)的两种SIP过程,即粉碎/碎片化。此外,还引入了两个不同的参数化方案。进行了一系列的灵敏度实验,以研究在欧洲中部开发的基于温暖的深对流云中,SIP如何影响云微物理学和云相位分布。仿真结果表明,云微物理特性受到SIP过程的显着影响。冰晶数浓度(ICNC)增加了20倍以上,并且考虑到SIP过程,表面沉淀降低了20%。有趣的是,发现BR占主导地位,并且BR过程速率分别大于RS和DS过程速率,分别为四个和三个数量级。在实现所有三个SIP过程时,云中的液体像素数馏分在云层内部和云顶部下降,但降低取决于BR方案。模拟深度对流云中冰的增强面(IEF)的峰值为10 2-10 4,并在2 24 8 c处位于所有三个SIP过程,而IEF的温度依赖性对BR方案敏感。但是,如果仅包括RS或RS和DS操作,则IEF是可比的,峰值为6个,位于2 7 8 C,此外,关闭CASCADE效应导致ICNC和冰晶体混合率显着降低。