尽管经过多年研究,爆炸引起的冲击波与头部相互作用是否会对人脑造成损伤仍是未知数。填补这一空白的一种方法是使用动物模型建立“缩放定律”,将观察到的动物脑损伤投射到人类身上。这需要实验室实验和动物头部的高精度数学模型,以建立实验观察到的爆炸引起的脑损伤与模型预测的生物力学反应之间的相关性。为此,我们对哥廷根小型猪进行了实验室实验,以开发和验证小型猪头部的三维 (3-D) 高精度有限元 (FE) 模型。首先,我们对哥廷根小型猪进行了实验室实验,以获得脑血管网络的几何形状,并表征脑组织和血管材料在爆炸暴露典型的高应变率下的响应特性。接下来,我们利用详细的脑血管信息以及物种特异性脑组织和血管材料特性,开发了小型猪头部的 3-D 高精度 FE 模型。然后,为了验证模型预测结果,我们进行了实验室冲击波管实验,即将哥廷根小型猪置于实验室冲击波管中 210 kPa 的爆炸过压下,并比较两个位置的脑压。我们观察到模型预测的压力与实验测量值之间有很好的一致性,最大压力的差异小于 6%。最后,为了评估脑血管网络对生物力学预测的影响,我们进行了模拟,比较了有和没有血管的 FE 模型的结果。如预期的那样,加入血管可以减轻脑部压力,但不会影响脑压的预测。然而,我们观察到,在模型中加入脑血管后,血管与脑组织界面附近区域的应变分布发生了高达 100% 的变化,这表明血管不仅会降低应变,还会导致剧烈的重新分布。这项工作将有助于建立观察到的脑损伤与预测的生物力学反应之间的相关性
在爆炸安全材料开发领域,能够为现有砖石结构提供爆炸缓解性能的本土聚脲配方已成功开发并在 CFEES 的冲击波管设施中进行了评估。基于用于弹药梯队的新型爆炸建筑 IGLOO、URP、HPM 和 UG 设计,制定了弹药主储存计划(MASP),以满足陆军和海军弹药库的未来规划。CFEES 开发的 QRA 工具已提交给最高机构爆炸物储存和运输委员会(STEC),该委员会由国防部所有利益相关方的代表组成。该工具随后得到了 STEC 的批准。在环境安全领域,主要的挑战是使用环保技术处置爆炸物/危险废物。已经开发出不同的处置技术,即吸附、高级氧化工艺和生物修复。
多种有限元 (FE) 模型可用于预测人脑与爆炸波相互作用后产生的生物力学反应,这些模型已证实纳入脑表面回旋、主要脑静脉以及使用非线性脑组织特性来提高模型准确性的重要性。我们假设,纳入更详细的脑静脉和动脉网络可进一步增强模型预测的生物力学反应,并有助于识别爆炸引起的脑损伤的相关因素。为了更全面地捕捉人脑组织对爆炸波暴露的生物力学反应,我们将之前已验证可承受钝性撞击的三维 (3-D) 详细脉管人头 FE 模型与 3-D 冲击波管 FE 模型耦合在一起。利用耦合模型,我们计算了人头面对来袭爆炸波时,爆炸过压 (BOP) 相当于 68、83 和 104 kPa 的生物力学反应。我们通过将模型预测的颅内压 (ICP) 值与之前在尸体头部进行的冲击波管实验收集的数据进行比较,验证了我们的 FE 模型,该模型包括详细的脑静脉和动脉网络、脑回和脑沟以及高粘弹性脑组织特性。此外,为了量化包含更全面的脑血管网络的影响,我们将详细血管模型与简化血管模型和无血管模型在相同爆炸载荷条件下的生物力学响应进行了比较。对于三个 BOP,预测的 ICP 值与额叶的实验结果非常吻合,峰值压力差异为 4 – 11%,相移差异为 9 – 13%。正如预期的那样,加入详细的脑血管系统不会影响 ICP,但是,它会使峰值脑组织应变重新分布多达 30%,并产生高达 7% 的峰值应变差异。与仅包含主要脑静脉的现有减少血管 FE 模型相比,我们的高保真模型重新分布了大部分脑组织的应变,这凸显了在人头 FE 模型中加入详细的脑血管网络的重要性,以便更全面地解释爆炸暴露引起的生物力学反应。