摘要 HondaJet 是一款先进的轻型商务喷气机,与现有的小型商务喷气机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
YRF-4C 12200 经过进一步修改,成为 F-4E 项目的空气动力学原型机,1967 年 4 月 20 日,官方名称从 YRF-4C 更改为 YF-4E。从 1968 年开始,YF-4E 测试了由铍制成的方向舵,而不是标准铝制方向舵。空军飞行动力学实验室 (AFFDL) 的工程师建议使用铍来减轻重量,因为铍制方向舵比铝制方向舵轻 34.6%。YF-4E 62-12200 于 1968 年 5 月 14 日使用新方向舵进行了首次飞行,并在接下来的 39 个月内进行了 158 次试飞。在测试新方向舵时,空军对飞机进行了改装,以测试“敏捷鹰 IV”计划下的固定前缘机动缝翼,并在安装到 F-4E 机队之前测试了开槽水平尾翼。测试计划结束时,固定翼前缘缝翼被拆除。
• 减轻重量——电动驱动允许飞机使用 3 个或 2 个电动和 2 个液压装置进行认证,而传统飞机需要 3 个电动和 3 个液压装置——由于增加了液压系统,电动驱动可以节省 A380 的重量约 1000 磅,F-35 的重量约 400 磅。通过取消液压系统节省的重量取决于飞机大小。• 提高性能和优化——无论是否使用液压动力进行驱动,液压泵/系统都会对发动机施加持续负载,而电动负载是按需/需要时才施加。——峰值非推进功率使用量减少 25%,燃料消耗减少 5%:2000 磅重量。 A340 的减排可节省 55 磅/小时的燃料,10 小时的飞行总共可节省 550 磅 • 提高了可维护性和生存能力/稳健性 – 由于液压系统的 MTBF 低~发动机驱动泵、压力密封和泄漏等,消除液压系统可显著提高可靠性。 – 驱动功率的有效隔离和独立性提供了稳健性
多电动飞机 (MEA) 是航空航天制造商的创新趋势。MEA 上的电气系统旨在取代传统的液压和气动系统,目的是减轻重量、降低维护成本并增加平均故障间隔时间 (MTBF)。然而,电气系统设计和集成不足会对飞机电网的电能质量产生负面影响,并可能导致电气元件故障和损坏。为了解决电能质量不足的问题,在电气系统设计过程的早期阶段必须进行概念验证和测试。传统测试平台涵盖越来越多的测试,以确保所需的技术准备水平。或者,虚拟 MEA 系统模拟提供了一种经济高效且省时的方法。在此背景下,庞巴迪和 OPAL-RT 正在与航空航天行业的合作者合作开发多电气系统集成模拟器 (MESIS),该模拟器将 MEA 系统模型集成到实时联合仿真平台中。本文概述了 MESIS 的范围和目标。 MESIS 的实际实施涉及关键技术方面和挑战,将通过本文提出的模拟策略来解决。
“飞行耻辱”一词象征性地反映了社会对提高飞机环保兼容性的强烈需求。在这种情况下,被视为最有效措施之一的未来飞机将使用可持续航空燃料(SAF)或氢气作为燃料,但存在燃料成本高和续航里程有限的问题。作为推动能源需求侧脱碳以实现碳中和的一种手段,减轻机身重量变得越来越重要,因为这将带来更高的燃油效率和更长的续航里程。另一方面,在后疫情社会,对窄体飞机的需求不断增长。然而,复合材料在窄体飞机中的应用受到减轻重量和提高生产率的困难的阻碍;因此在这方面取得的进展不如宽体飞机。为了突破这一局面,三菱重工株式会社 (MHI) 自 2021 年起在新能源和工业技术发展组织 (NEDO) (1) 绿色创新基金项目的赞助下,致力于研究和开发可实现未来/窄体飞机减重的先进复合材料技术。| 1. 简介
翼梁,肋骨和字符串也是由支柱支撑的版本。的差异在于一个事实,即通过张力吸收一部分载荷(如果存在高翼的配置,如图2所示)或压缩(如果是低翼构造)。这意味着机翼的结构可以更轻,甚至可能在相同数量的质量方面更大[1]。这意味着在结构上更轻,更长,更薄的翅膀具有较高的细长度,从而提高了空气动力学效率或L/D比。此外,提高的效率将意味着飞机还需要减少燃料,从而减轻重量。,尽管这种配置也有一些缺点,因为支撑杆本身也增加了飞机的质量,并增加了飞机湿润的表面,从而增加了其寄生虫的阻力。也必须注意干扰和添加的结构复杂性,并且这种配置可能导致的空气弹性问题[2]。对于短途飞机来说,这种设计特别有趣,其中更具空气动力的机翼可以提供更高的攀爬速度和更滑的CD(连续下降)。
摘要 :近年来,天然纤维越来越广泛地用作聚合物复合材料的增强材料,以生产低成本产品。聚合物基质中的纤维增强材料使复合材料具有良好的机械和电气性能。根据等级和方向,复合材料的重量可以是钢的五分之一,同时提供相似或更好的刚度和强度。此外,与钢或铝不同,复合材料不会生锈或腐蚀。复合材料的增强相具有耐久性、强度和刚度。复合材料传统上被用作结构材料。由于电气行业的不断发展,复合材料越来越多地用于电气应用,例如套管、断路器、耦合电容器等。由于性能要求的巨大差异,结构和电气复合材料的设计参数有很大不同。根据应用,结构复合材料。结构复合材料优先考虑足够的强度和模量,而电气复合材料优先考虑优异的介电常数、热导率和低热膨胀以及屏蔽效能。在电气行业,低密度是理想的,因为它可以减轻重量。还要求具有较高的强度重量比和介电性能。本文简要回顾了聚合物复合材料的性能及其在高压工业中的应用。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。然而,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三种模拟湍流水平(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低时(在所有振动下),基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它更慢且更不准确。模板没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生。我们的工作为受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制提供了新的信息。
摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。