摘要 本文介绍了 FLEXOP H2020 EU 项目框架内无人驾驶实验飞机减速板的建模、系统识别、仿真和飞行测试。由于飞机配备了响应缓慢的喷气发动机,因此在加速飞机进行颤振测试后,需要使用减速板来增加减速,以便保持在当局批准的有限空域内进行飞行测试。减速板由伺服电机、开启机构和减速板控制面本身组成。在简要介绍了演示飞机、减速板设计和实验测试台后,本文参考了以前的工作,对建模和系统识别进行了深入描述。系统识别包括确定高度非线性(饱和和负载相关)伺服执行器动力学以及非线性气动和机械特性,包括刚度和惯性效应。相对于之前的工作,新的贡献是考虑了负载打开或关闭的统一伺服角速度极限模型,考虑了整个偏转和飞机空速范围的减速板法向力和阻力模型的详细构建和评估,提出了统一的气动-机械非线性模型,给出了减速板角度、动态压力和伺服扭矩之间的直接关系,以及基于传递函数的机构刚度和惯性效应建模。确定的伺服动力学模型包括系统延迟、内部饱和、前面提到的负载相关角速度极限模型和传递函数模型。基于考虑减速板整个开启角度和动态负载范围的试验台测量验证了伺服模型。还考虑了新的、未发表的测量结果,其中伺服负载随着伺服移动而逐渐增加,以在更现实的情况下验证模型。然后构建完整的减速板模型并在模拟中测试以检查实际行为。下一步,通过在软件在环 (SIL) Matlab 仿真中使用飞机的基线控制器飞行模拟测试轨迹,对集成到 FLEXOP 飞机非线性仿真模型中的减速板模型进行测试。首先,将独立的减速板仿真与 SIL 结果进行比较,以验证减速板模型与非线性飞机仿真的完美集成。最后,使用实际飞行数据来验证和更新减速板模型并显示减速板的有效性。然后比较有和没有空气制动器的减速时间,强调空气制动器在测试任务中的实用性。
JAR 22.321 概述 JAR 22.331 对称飞行条件 JAR 22.333 飞行包线 JAR 22.335 设计空速 JAR 22.337 极限机动载荷系数 JAR 22.341 阵风载荷系数 JAR 22.345 减速板和襟翼展开时的载荷 JAR 22.347 非对称飞行条件 JAR 22.349 滚动条件 JAR 22.351 偏航条件 JAR 22.361 发动机扭矩 JAR 22.363 发动机支架侧向载荷 JAR 22.371 陀螺仪载荷 JAR 22.375 翼梢小翼
身体数据框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 顶部/底部突出部. . . . . . . . . . . . . . . . 16 前部/后部突出部. . . . . . . . . . . . . . . . . . 18 平滑机身. . . . . . . . . . . . . . . . . . . . . . 19 向机身添加其他机体. . . . . . . . . . . . . 19 3.3 塑造机翼. . . . . . . . . . . . . . . . . . . 20 设置基本特征. . . . . . . . . . . . . . . . . . 20 添加副翼、襟翼和其他控制面 . . . . . . . . . . . . . . . . . . . 21 指定副翼、升降舵和其他表面 . . . . . . . . . . . . . . . . . . 22 指定襟翼和前缘缝翼 . . . . . . . . . . . . . . . . . . . . . . 23 为机翼添加控制面 . . . . . . . . . . . . . . . . . . . . 25 添加机身上的减速板 . . . . . . . . . . . . . 27 自定义机翼部件(用于入射角、尺寸和位置) . . . . . . . . . 29 设置机翼的翼型 . . . . . . . . . . . . . . . . . . 30 使机翼可移动 . . . . . . . . . . . . . . . . . 31 设置可变机翼后掠角 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 添加发动机吊架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.7 设置牵引钩、绞盘钩、登机门和加油口的位置....................................................................................................................................................................45
• 飞机正在对 1966 米长的 12 号跑道进行目视进近,A/P1 和两个 FD 均处于开启状态。• A/P 在 2300 英尺 RA 处断开。• 在约 1200 英尺 RA,在左最后转弯期间,选择了 FULL 配置,随后立即将减速板杆推到后方。这解除了地面扰流板。• 在 500 英尺 RA,CAS 约为 170 节(Vapp+32),下降率约为 1800 英尺/分钟。• 进近从未稳定下来。• 飞机第一次接地在距跑道入口 740 米处(左侧 1226 米),CAS 为 150 节(Vapp+12)。• 第二次接地发生在距跑道入口约 1070 米处(左侧 896 米),CAS 为 146 节(Vapp+8)。 • 两个推力杆都处于怠速状态。未选择推力反向器。• 机组人员进行了手动制动,减速率达到 0.3g。• 飞机以约 85kt 的速度离开跑道。
• 飞机正在对 1966 米长的 12 号跑道进行目视进近,A/P1 和两个 FD 均已接通。• A/P 在 2300 英尺 RA 处断开。• 在大约 1200 英尺 RA 处,在左转弯期间,选择了 FULL 配置,之后立即将减速板杆推到后方。这解除了地面扰流板。• 在 500 英尺 RA 处,CAS 约为 170kt(Vapp+32),下降率约为 1800 英尺/分钟。• 进近从未稳定下来。• 飞机第一次接地时距跑道入口 740 米(剩余 1 226 米),CAS 为 150 节(Vapp+12)。• 第二次接地时距跑道入口约 1 070 米(剩余 896 米),CAS 为 146 节(Vapp+8)。• 两个推力杆均处于怠速状态。未选择反推装置。• 机组人员进行手动制动,减速率达到 0.3g。• 飞机以约 85 节的速度离开跑道。
• 飞机正在对 1966 米长的 12 号跑道进行目视进近,A/P1 和两个 FD 均处于开启状态。• A/P 在 2300 英尺 RA 处断开。• 在约 1200 英尺 RA,在左最后转弯期间,选择了 FULL 配置,随后立即将减速板杆推到后方。这解除了地面扰流板。• 在 500 英尺 RA,CAS 约为 170 节(Vapp+32),下降率约为 1800 英尺/分钟。• 进近从未稳定下来。• 飞机第一次接地在距跑道入口 740 米处(左侧 1226 米),CAS 为 150 节(Vapp+12)。• 第二次接地发生在距跑道入口约 1070 米处(左侧 896 米),CAS 为 146 节(Vapp+8)。 • 两个推力杆都处于怠速状态。没有选择推力反向器。• 机组人员进行了手动制动,减速率达到 0.3g。• 飞机以约 85 节的速度离开跑道。
• 飞机正在对 1966 米长的 12 号跑道进行目视进近,A/P1 和两个 FD 均已接合。 • A/P 在 2300 英尺 RA 处断开。 • 在大约 1200 英尺 RA 处,在左转弯期间,选择了 FULL 配置,之后立即将减速板杆推到后方。这解除了地面扰流板。 • 在 500 英尺 RA 处,CAS 约为 170 节(Vapp+32),下降率约为 1800 英尺/分钟。• 进近从未稳定下来。• 飞机第一次接地时距跑道入口 740 米(剩余 1226 米),CAS 为 150 节(Vapp+12)。• 第二次接地时距跑道入口约 1070 米(剩余 896 米),CAS 为 146 节(Vapp+8)。• 两个推力杆都处于怠速状态。未选择推力反向器。• 机组人员进行了手动制动,减速率达到 0.3g。• 飞机以约 85 节的速度离开跑道。
飞机于 05:16 1ST(23:46:50 UTC)开始下降进入香港。它对跑道 07L 进行了 ILS 进近。它在 2000 英尺(气压高度)处建立了 ILS(LOC 和 GS)。飞机在 ILS(LOC 和 GS)上建立后,没有观察到与 DFDR 数据的显着偏差。飞机从 1000 英尺无线电高度下降,配置为襟翼 30 着陆,减速板处于准备状态,正在接近跑道 07L。自动驾驶仪在 05:53:47 1ST 时(00:23:47UTC)处于下滑道 (G/S) 和定位器 (LOC) 模式,自动油门接合速度 (SPD) 模式。自动驾驶仪在 5:54:03 1ST 时(00:24:03 UTS)在 843 英尺 RA 处解除,而自动油门保持接合直到接地后,参考着陆速度 (VREF) 记录为 140 节,在进近过程中,计算空速保持在大约 145 节 (VREF+5)。进近过程中下降率保持在平均 800 英尺/分钟。
(1) FAR 第 25.703 节“起飞警告系统”规定,运输飞机必须安装起飞配置警告系统。该规则由 1978 年 3 月 1 日生效的 25-42 修正案添加到第 25 部分。第 25.703 节要求安装起飞警告系统,并在飞机未处于允许安全起飞的配置时,在起飞滑跑的初始阶段向机组人员提供声音警告。该规则的目的是要求起飞配置警告系统仅涵盖 (a) 所需系统的不安全配置,以及 (b) 如果没有提供单独且充分的警告,则系统故障导致表面或系统功能错误的影响。根据 25-42 修正案的序言,起飞警告系统应作为“检查单的备份,特别是在异常情况下,例如检查单中断或起飞延迟。”需要警告的情况包括襟翼或前缘装置不在批准的起飞位置范围内,以及机翼扰流板(符合 5 25.671 要求的横向控制扰流板除外)、减速板或纵向配平装置处于不允许安全起飞的位置。如果这些装置可以放置在不允许安全起飞的位置,还应考虑增加方向舵配平和副翼(滚转)配平。
飞机着陆是飞行的最终阶段,飞机从 15 米的高度慢速飞行,着陆后完全停下来,然后在跑道上滑行 [4]。着陆是飞行中最困难的阶段,要求飞行员具备非常高的驾驶技能 [1]。着陆是通过减速并下降到跑道来完成的。减速是通过使用襟翼、起落架或减速板减少推力和/或产生更大阻力来实现的。飞行的起飞过程可分为两个主要阶段 - 加速和起飞。这两个阶段又由其他某些子阶段划分。航空工业的进步现已达到所有这些阶段都可以在没有飞行员参与的情况下进行的地步,即使用自动驾驶系统。在民航中,无人系统仍被谨慎使用,主要仅在水平飞行阶段使用,并且仍由机组人员控制。不过,主要是由经验丰富的飞行员执行着陆过程。由于着陆时所有动作的复杂性和危险性,根据统计,此阶段被认为是最危险的阶段 [2]。这项工作的目的是分析影响地面路径长度的因素,并开发一种系统,该系统可以在飞机着陆后完全自动停止飞机,或者至少帮助飞行员确定剩余的制动距离,以防止危险情况。开发的系统和方法将提供信息