项目涉及制造工艺(铸造/焊接/表面重熔/熔覆等)中凝固过程的多尺度数值研究。宏观模型为连续尺度,将基于有限体积法,在求解质量、动量和能量方程后获得温度场。获得的温度场与低尺度模型(中尺度/微尺度)耦合,以模拟中尺度结构(晶粒结构)或微观结构。低尺度模型包括两种现象 1. 成核 2. 生长,并基于细胞自动机算法。多尺度、多物理模拟将用于执行参数研究,以将工艺参数与微观结构联系起来并表征形态转变。
摘要 钛合金定向能量沉积 (DED) 因其在自由成型和再制造方面的灵活性而成为一种快速发展的技术。然而,沉积过程中凝固微观组织的不确定性限制了其发展。本文提出了一种人工神经网络 (ANN) 来研究晶界倾斜角与三个致病因素(即热梯度、晶体取向和马兰戈尼效应)之间的关系。在田口实验设计下进行了一系列线材 DED、光学显微镜 (OM) 和电子背散射衍射 (EBSD) 实验,以收集 ANN 的训练和测试数据。与传统的微观结构模拟方法相比,本文开发的策略和 ANN 模型被证明是一种描述 DED 制备 Ti6Al4V 中竞争性晶粒生长行为的有效方法。它们可用于实现定量微观结构模拟,并扩展到其他多晶材料凝固过程。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
随着可再生能源的使用日益增多,为了提高电力弹性(在调节储备能力的同时承受供需之间显著和突然的不平衡的能力),热电厂系统的涡轮旁路系统等中采用了储热系统,以便可以储存启动期间的废热或极低负荷条件下锅炉和涡轮/发电机输出之间的不匹配热量。这种储存的热量可以在高负荷运行时将其能量释放到预锅炉和/或锅炉来发电,从而节省约 2% 或更多的能源。通过利用相变材料(PCM:应用熔化/凝固过程)的大量潜热或通过增加熔盐和水等显热存储材料的温差,可以使储热设备变得紧凑,从而可以安装在发电厂内。我们目前正在开发这种系统,以与电池存储系统相当的单位电容量价格实现其实际应用。| 1. 简介
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
水凝胶泡沫广泛用于生物材料、化妆品、食品或农业等许多应用。然而,需要精确控制泡沫形态(气泡大小或形状、连通性、壁和支柱厚度、均匀性)以优化其性能。因此,这里提出了一种从液体泡沫模板生成、控制和表征水凝胶泡沫形态的方法:以海藻酸盐-CaHPO 4 基水凝胶泡沫为例,通过将氮气通过喷嘴吹入溶液中来提供高度可控的发泡过程,从而产生具有毫米级气泡的水凝胶泡沫。首先实施了泡沫组成材料的流变学表征方案,并强调了初始液体泡沫特性以及凝固动力学和泡沫老化机制之间的竞争对所得形态的影响。然后,对正在凝固和已凝固样品进行的 X 射线断层扫描表征表明,通过控制泡沫配方的时间演变,可以调整藻酸盐泡沫的最终形态。只要凝固过程发生的时间比泡沫不稳定机制短,这种方法就可以适应其他水凝胶或聚合物配方、泡沫特性和长度尺度。
定向能量沉积是一种 3D 打印方法,它使用聚焦能量源(例如等离子弧、激光或电子束)来熔化材料,然后通过喷嘴同时沉积。与其他增材制造工艺一样,该技术用于向现有组件添加材料、进行维修或制造新部件。直接能量沉积增材制造技术已引起业界的广泛关注,用于制造/维修在用组件。然而,该过程经历了复杂的熔化和凝固动力学,对有效控制晶粒结构提出了挑战,从而导致潜在的结构故障。这项研究旨在调查使用高强度超声波控制凝固过程和扩大系统规模以制造大型组件的潜力。从可行性研究中可以看出,超声波可以帮助细化晶粒结构,还可以减少孔隙率等异常。在可行性研究中,考虑了一系列频率和功率配置,以简化系统的扩大。根据所研究的超声波配置,最终确定在放大生产中使用 40 kHz 60 W 配置。还注意到,由于凝固过程中的成分过冷降低了熔池主体的温度梯度,因此超声波辅助增材制造中的热裂纹减少了。此外,还注意到晶粒取向垂直于振动方向,这有可能用于根据需要控制晶粒取向。这一新发现为开发超声波辅助增材制造工艺提供了新的应用。
广泛使用农药防治农业害虫是环境健康公共舞台上的一个热门话题。选择性害虫防治以将环境影响降至最低是环境毒理学领域的主要目标,特别是为了避免不同生物体意外中毒。抗凝血灭鼠药会导致血液凝固过程异常;它们被广泛用于控制啮齿动物,导致家畜和非目标掠食性野生动物通过直接摄入含有灭鼠药的诱饵或食用中毒猎物而无意中接触灭鼠药。为了报告毒性作用,最常见的方法是测量出现临床症状的死亡或中毒动物肝脏或血浆中抗凝血灭鼠药的残留量。然而,一个主要的挑战是目前文献中缺乏用于区分接触和毒性的肝脏或血浆浓度阈值。由于抗凝血灭鼠药在不同物种和物种内的药理学特性存在差异,因此必须确定每种物种的剂量反应关系,以预先判断中毒的相对风险。除此之外,生物标志物是广泛用于污染物生态风险评估的关键解决方案。由于抗凝血灭鼠药 (AR) 在生化水平上具有毒性作用,因此生物标志物可以作为毒性暴露的指标。从这个意义上讲,了解生物体内抗凝血灭鼠药的毒理学知识是确定敏感、特异性和合适生物标志物的重要工具。在这篇综述中,我们概述了不同动物物种中抗凝血灭鼠药的毒效学和毒代动力学参数。我们研究了用于表征和区分抗凝血灭鼠药暴露和毒性作用的不同类型的生物标志物,展示了这些检测方法的优缺点。最后,我们描述了可能的新生物标志物并强调了它们的能力。