当将多个项目保存在短期内存中时,回顾性优先级优先级优先于另一个项目(复古示意)可以促进后续召回。然而,这种作用的神经和计算基础知之甚少。最近的一项研究记录了在复古任务期间猕猴侧向前额叶皮层(LPFC)中的神经信号,在(预先提示)和(会引发后)回归开始之前(预告症)和之后的延迟期间活动对比。他们报告说,在提示前延迟中,单个刺激被维持在神经种群活动的非独立子空间中,而在提示后延迟中,先前的项目被旋转成一个共同的子空间,有可能允许一种常见的读取机制。为了了解如何通过错误最小化可以学习此类代表性转变,我们通过监督训练了经常性的神经网络(RNN),以执行同等的提示回复任务。rnns提供了两个表示结合性颜色刺激的输入,然后进行了预示记忆延迟,位置返回和后提示延迟。我们发现,在猕猴LPFC中观察到的正交到平行的几何变换自然出现在经过训练以执行任务的RNN中。有趣的是,仅当需要在读数之前将提示信息用于几个周期的短期记忆中才能形成平行几何形状,这表明它在维护过程中可能具有鲁棒性。我们通过分析RNN的学习动态和连接模式以及用概率提示训练的模型的行为来扩展这些发现,从而使我们能够为将来的研究做出预测。总的来说,我们的发现与最新的理论说明是一致的,该账目提出的回顾将优先的内存项转化为前瞻性,面向动作的格式。
摘要:运动想象作为自发性脑机接口的重要范式,被广泛应用于神经康复、机器人控制等领域。近年来,研究者提出了多种基于运动想象信号的特征提取和分类方法,其中基于深度神经网络(DNN)的解码模型在运动想象信号处理领域引起了广泛关注。由于对受试者和实验环境的严格要求,收集大规模高质量的脑电图(EEG)数据非常困难,而深度学习模型的性能直接取决于数据集的大小。因此,基于DNN的MI-EEG信号解码在实践中被证明是非常具有挑战性的。基于此,我们研究了不同的数据增强(DA)方法在使用DNN对运动想象数据进行分类的性能。首先,我们使用短时傅里叶变换(STFT)将时间序列信号转换为频谱图像。然后,我们评估并比较了不同 DA 方法对该频谱图数据的性能。接下来,我们开发了一个卷积神经网络(CNN)来对 MI 信号进行分类,并比较了 DA 后的分类性能。使用 Frechet 初始距离(FID)评估生成数据(GD)的质量和分类准确率,使用平均 kappa 值探索最佳的 CNN-DA 方法。此外,使用方差分析(ANOVA)和配对 t 检验来评估结果的显著性。结果表明,深度卷积生成对抗网络(DCGAN)比传统 DA 方法:几何变换(GT)、自动编码器(AE)和变分自动编码器(VAE)提供了更好的增强性能(p < 0.01)。使用 BCI 竞赛 IV(数据集 1 和 2b)的公共数据集来验证分类性能。经过 DA 后,两个数据集的分类准确率分别提高了 17% 和 21%(p < 0.01)。此外,混合网络 CNN-DCGAN 的表现优于其他分类方法,两个数据集的平均 kappa 值分别为 0.564 和 0.677。
麦当劳标准(Thompson等,2018),MS的诊断结合了临床,成像和实验室证据。神经系统检查与成像[磁共振成像(MRI)或光学相干断层扫描]和神经生理测试(视觉诱发电位)结合使用。在MRI上患有临床症状和病变的患者中,脑脊液通过腰椎穿刺收集。在脑脊液流体中存在寡克隆条带证实了MS的诊断(Thompson等,2018)。磁共振成像技术,例如双重反转恢复,相位敏感的反转恢复和使用梯度回声序列的磁化的快速采集来突出大脑皮层的MS病变。这些区域是由T1,T2或流体衰减反转恢复(Flair)方法获得的MRI图像中存在的高强度白质区域(Hitziger等,2022)。在图1a上,有一个示例MRI T1图像,带有两个病变,这些损伤显示为白质的高强度区域(Sarica和Seker,2022年)。在长轴中至少有3毫米的高强度区域被认为是病变(Thompson等,2018)。监测该疾病的演变,但治疗的效率也通过在年度随访MRI图像上出现或没有新病变来分析(Martínez-Heras等人,2023年)。在MRI图像上对脱髓鞘区域的手动识别和划定(图1B)具有一些缺点,耗时,需要合格的人员。其结果取决于专家解释MRI图像的经验。除了人为因素的主观性外,还可能发生差异,这是由于不同分辨率或具有各种质量的MRI图像而发生的。为了减少这些缺点,已经提出了几种用于诊断和监测MS的自动解决方案(Shoeibi等,2021)。通过在深度学习算法中使用神经网络与纹理分析相结合(Componick等,2021a),获得了与专家注释相当的结果。纹理分析是医学图像处理中的一种已知且有前途的技术,可在检测硬化病变方面具有显着的结果(Elahi等,2020; Boca等,2023)。通常,尝试通过那些特征来检测病变,这些特征是强度,照明,几何变换或噪声变化的图像不变的。为此,量化了像素强度和像素分布的相互关系,因此获得了许多特征。这些功能可以分为以下类别:第一阶特征(灰度直方图分析),二阶特征(灰度依赖矩阵),光谱特征和分形特征(小波变换和傅立叶变换)。用随机纹理识别的像素被归类为噪声(Friconnet,2021)。为了提高信号噪声比并降低噪声,将包括数学过滤组成的预处理操作应用于MRI图像。为例,高斯带通滤波器用于消除背景噪声(Kumar等,2023)。放射线学的方法由于出现了用于检测医学图像病变的自动方法(Lambin等,2012),因此有必要开发一种方法来通过自动检测方法来分析和评估结果的可重复性和质量。放射素学已逐渐应用于病理损害,诊断,差异诊断和MS预后的分析。开发了使用放射线特征的机器学习(ML)模型来检测MS病变(Peng等,2021)。
处理步骤,但对于带有可变音调的打印图案,它的灵活性较小。此外,将DSA应用于高量制造的主要挑战之一是观察到的缺陷密度,该缺陷密度分别大于所需的缺陷密度为1和0.01缺损cm 2用于记忆和逻辑应用。最常见的缺陷是桥梁和位错。,即使EUVL也没有缺陷问题,如先前的工作4、5所述,并且被证明会导致桥梁缺陷。为了解决大型缺陷密度的关注,尤其是在DSA中,采用各种过程的选择步骤来确定可以减少整体缺陷密度的重要因素;优化步骤包括不同的退火条件,表面模式的周期性,指南线的宽度,模式的地形以及背景化学等。对于列出的处理步骤的每一个组合,进行扫描电子显微镜(SEM)图像的缺陷检查以评估处理条件的性能是必不可少的。这涉及为统计目的收集足够数量的SEM图像,并手动执行缺陷检测或使用图像处理工具。随着处理步骤的不同组合的数量增加,缺陷的手动标记效率低下。解决方案之一是使用新兴的深度学习算法来检测和分类不同类型的缺陷。在材料科学领域,已经应用了许多算法来从给定的图像集中学习复杂的缺陷特征。例如,(1)Xie等。6使用多级支持向量机算法来检测印刷电路板和晶圆中最常见的缺陷。这些缺陷涉及环,半圆,簇和划痕。(2)Zheng和Gu 7采用了学习算法的机器,以检测具有高准确性的石墨烯中多个空缺数量。(3)Tabernik等。8报道了一项研究,在该研究中,他们利用基于细分的深度学习体系结构从某些工业应用的角度来检测成品中的表面异常。对缺陷的深度学习辅助识别不仅限于材料科学领域,因此已在其他各个领域中用于诸如下水道管道9、10和水果缺陷检测中的缺陷检测。11我们认为,使用这种自动化方法来计算不同类型的缺陷,并指定其在线路和空间(L/S)模式中的位置,可以帮助过程工程师快速收集足够的统计数据,并提供更准确,更一致的方法来评估每个处理条件的组合。通常,需要大量培训样本以确保网络的高精度。不幸的是,如前所述,由于人类的努力和专业知识所需的负载,因此要求SEM图像中存在的缺陷标记的时间耗时的过程。这为收集足够的数据构成了深度学习网络所需的精度的障碍。13,14另一种数据增强方法是通过执行模拟来扩展数据集。数据增强是一种可行的选择,可以通过利用原始数据集中的更多信息来夸大培训数据集。如Shorten和Khoshgoftaar的评论论文所讨论的,12个增强策略包括几何和颜色变换,随机擦除和特征空间扩展。翻转图像是最简单,最便宜的策略之一,结合了其他几何形状转换,旋转和缩放的几何变换可提高深度学习算法的准确性。在Carrasco-Davis等人的天文事件的分类中探索了这种策略,15,其中作者依靠基于物理的模型来生成模拟数据集。参考。16,如Holtzman等人所述,使用点散射模型生成的模拟数据集为雷达图像模拟。17与真实的数据集混合在一起,可以提高船舶合成孔径雷达图像中目标识别的准确性。在这项工作中,使用最小的SEM数据集进行培训[O(100)图像],我们使用了一个受良好版本3的启发的对象分类和检测网络。在剪切 - 索尔沃退火条件下使用圆柱体组成共聚物进行实验后,收集了SEM数据集。19网络中的卷积层和过滤器的数量已针对网络的准确性进行了优化。实施了各种激活功能和不同损失功能的进一步检查。使用两种策略夸大了具有有限数量SEM图像的初始数据集:(1)几何转换