摘要:聚二甲基硅氧烷(PDMS)已成为植入传感器中介电层的有前途的候选者,由于其出色的生物相容性,稳定性和柔韧性。这项研究涉及一种创新的方法来产生石墨烯增强的PDMS(GR-PDMS),在该方法中,将石墨粉末剥落成聚合物溶液中的单层和几层石墨烯片中,目前与PDMS形成交联。该方法在聚合物基质中产生均匀分布的石墨烯,并在石墨烯和PDM之间进行了改进的接口,从而显着降低了PDMS中石墨烯的渗透阈值从10%降低到5%。合成的GR-PDMS表现出改善的机械性和电气性能,测试了潜在的电容压力传感器。结果表明,令人印象深刻的压力灵敏度高达0.0273 kPa -1,比原始PDM的压力敏感性高45倍,比报道的文献值高2.5倍。GR-PDMS展示了出色的压力感应能力和稳定性,从而满足了植入颅内压(ICP)传感器的要求。
k -1。六角硼硝化硼(H-BN)木制的含量是有望用于下一代电子热管理的热导电材料。这些电绝缘但热导导的H-BN平流可以作为热填料掺入,以将高𝜿赋予聚合物基于聚合物的复合材料。嵌入了几层H-BN(FLH-BN)植物的基于纤维素的复合材料,实现了使用成本效率和可伸缩程序制备的A liby21.7 W m-1 K-1。该值比在嵌入了大量H-BN的复合材料中观察到的值高5倍(BH-BN,𝜿≈4.5w m-1 k-1),表明在H-BN聚合物组合的H 𝜿 𝜿上,FLH-BN的上i上i上的益处。当用作热界面材料(TIM)的糊剂时,与在同一H-BN负载下的BH-BN综合材料相比,在功率密度(H)下,以2.48 W CM-2的功率密度(H)将最高温度(T MAX)降低24.5°C。结果提供了一种有效的方法,可以改善TIMS的基于纤维素的热糊剂的𝜿,并证明了它们在集成电路(ICS)和高功率电子设备中的热量耗散的生存能力。
这项工作着重于316升底物上的复合涂层(316升染色的钢)的有向能沉积的热建模。开发的有限元模型预测了沉积过程中包裹中部中间部分的热历史和熔体池维度的演变。nu-merical结果与实验分析(光学和扫描电子显微镜和热电偶记录)相关,以验证模型并讨论可能的固化机制。证明,在边界条件下强制对流的实施非常重要,以确保输入能量和热量损失之间的平衡。最高峰值温度显示了第一层的略有增加趋势,其次是明显的稳定,随着外壳高度的增加。通过边界证明了高热量损失。在文献中,大多数建模研究都集中在单层或几层几何上,但这项工作描述了一个多层模型,能够预测沉积过程中的热领域历史记录并提供有关新物料的一致数据。该模型可以应用于重新校准的其他形状。详细介绍了校准方法以及对输入参数的灵敏度分析。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
编码器-解码器网络在分层特征融合方面表现优异,常用于医学图像分割。然而,特征解码和空间恢复的扩展路径在融合不同层的特征图时没有考虑长期依赖性,并且通用编码器-解码器网络没有充分利用多模态信息来提高网络鲁棒性,尤其是对于医学MRI的分割。在本文中,我们提出了一种称为循环解码单元(RDC)的新型特征融合单元,它利用卷积RNN在解码阶段记忆来自前几层的长期上下文信息。我们还基于RDC提出了一种用于分割多模态医学MRI的编码器-解码器网络,称为卷积循环解码网络(CRDN)。CRDN采用CNN主干对图像特征进行编码,并通过一系列RDC对其进行分层解码以获得最终的高分辨率分数图。在 BrainWeb、MRBrainS 和 HVSMR 数据集上的评估实验表明,RDC 的引入有效地提高了分割精度并减小了模型尺寸,并且提出的 CRDN 对医学 MRI 中的图像噪声和强度非均匀性具有很强的鲁棒性。
由于Novoselov和Geim设法隔离了一层石墨烯,显示了该材料的出色特性[1],因此石墨烯研究并没有进一步停止。这无疑已成为过去二十年中研究最多的领域,不仅是石墨烯的性质,而且是该材料与其他元素结合形成基于石墨烯的化合物的多功能性[2]。与石墨烯相关材料的主要合成途径之一涉及石墨烯(GO)。在强氧化剂的帮助下,石墨氧化过程引入了氧化石墨氧化过程,引入了官能团,例如羰基,环氧化物,羟基和羧基,可能存在于边缘和/或石墨烯层的基础平面上[3]。这些组减少了层之间的相互作用,从而增加了它们之间的距离。石墨烯片之间的更大空间有助于去角质,从而形成单层或几层氧化石墨烯[4]。因此,GO是一个用功能组装饰的石墨烯层。这些功能组负责石墨烯片板的功能化及其与其他材料的相互作用[5]。进行化学/热修饰的这种多功能性改变了其特性,使其适用于最多样化的区域,例如聚合物复合材料
与其六角形对应物不同的菱形堆叠的过渡金属二色元(3R-TMD)表现出较高的载流子迁移率,滑动铁电性,并相干增强了非线性光学响应。然而,很难大型多层单晶单晶的表面外延生长。我们报告了一种界面外观方法,用于它们的几种成分,包括二硫化钼(MOS 2),二苯胺钼,二硫化牛二硫化物,二硫化钨,二硫代二硫化钨,二硫化二硫化物,二硫化硫化物,二氮氮化物,二氧化氢和丙二氧化氢脱硫酸盐。将金属和果酱饲喂持续到单晶Ni底物和生长层之间的界面可确保一致的3R堆叠序列,并从几层到15,000层受控厚度。全面的特征证实了这些薄膜的大规模均匀性,高结晶度和相位纯度。生长的3R-MOS 2分别显示出双层和三层的室温迁移率最高为155和190平方厘米。具有厚3R-MOS 2的光学差异频率产生在准相匹配条件下显示出明显增强的非线性响应(比单层大5个数量级)。t
穿几层松散的配件,轻巧,温暖的羊毛衣服。由于大多数热量损失发生在这些身体部位时,就可以充分遮住头部,脖子,手和脚趾。吃维生素-C富水果和蔬菜和饮用足够的液体,最好是温暖的液体,以保持足够的免疫力避免或限制室外活动。保持干燥,如果湿润,请立即换衣,以防止身体热量损失。穿绝缘/防水鞋。用冷淡的水缓慢温暖身体的受影响区域;不要剧烈摩擦皮肤。如果受影响的皮肤区域变黑,请立即咨询医生。使用加热器避免吸入有毒烟雾时保持通风。使用电气和气体加热设备时采取安全措施。弱势群体所需的极端关心。对患有冻伤/体温过低的人尽快寻求医疗护理。保护牲畜免受寒冷的天气。在低温的情况下,为动物的人造照明和加热做出了足够的安排。随着温度降低,因此将冬季包装给蜜蜂菌落。做出必要的安排,以保护农作物免受寒冷和霜冻的影响。
穿几层松散的配件,轻巧,温暖的羊毛衣服。由于大多数热量损失发生在这些身体部位时,就可以充分遮住头部,脖子,手和脚趾。吃维生素-C富水果和蔬菜和饮用足够的液体,最好是温暖的液体,以保持足够的免疫力避免或限制室外活动。保持干燥,如果湿润,请立即换衣,以防止身体热量损失。穿绝缘/防水鞋。用冷淡的水缓慢温暖身体的受影响区域;不要剧烈摩擦皮肤。如果受影响的皮肤区域变黑,请立即咨询医生。使用加热器避免吸入有毒烟雾时保持通风。使用电气和气体加热设备时采取安全措施。弱势群体所需的极端关心。对患有冻伤/体温过低的人尽快寻求医疗护理。保护牲畜免受寒冷的天气。在低温的情况下,为动物的人造照明和加热做出了足够的安排。随着温度降低,因此将冬季包装给蜜蜂菌落。做出必要的安排,以保护农作物免受寒冷和霜冻的影响。
摘要:对未来电子应用的原子较薄的半导体对单层(1L)硫属(例如MOS 2)(例如化学蒸气沉积(CVD)生长)非常关注。然而,关于CVD生长的硒的电性能,尤其是Mose 2的报告很少。在这里,我们比较了CVD生长的1L和BiLayer(2L)Mose 2的电性能,并由子材料计的ALO X封顶。与1L通道相比,2L通道表现出约20倍较低的接触电阻(R C)和〜30倍的电流密度。r c通过ALO X封盖进一步降低> 5×,这可以提高晶体管电流密度。总体而言,2L ALO X盖的Mose 2晶体管(约500 nm的通道长度)可提高电流密度(在V DS = 4 V时约为65μM /μm),良好的I ON / I ON / I ON / I ON / I OFF> 10 6,R C为约60kΩ·μm。 1L设备的性能较弱是由于它们对处理和环境的敏感性。我们的结果表明,在不需要直接带隙的应用中,2L(或几层)比1L更可取,这是对未来二维电子产品的关键发现。关键字:丙象钼,单层,双层,接触电阻,晶状体效应晶体管,氧化物封盖,掺杂,2D半导体
[1] J. D. Eshelby,椭圆形包容的弹性领域的确定及相关问题,《伦敦皇家学会》 A,1957年,第1卷。241,否。1226,pp。376–396。https://doi.org/10.1098/rspa.1957.0133 [2][3] C. Teodosiu,晶体缺陷的弹性模型,Springer-Verlag,柏林 - 海德伯格 - 纽约,1982年。[4] D. Lyu,X。keer,在半无限空间中椭圆形热包容产生的完整弹性场的显式分析解决方案,《应用机械学报》,2018年,第1卷。85,否。5,艺术。否。051005。Liu,G。Song和H.M. Yin,边界对含有不均匀性的半无限制固体弹性领域的效果//伦敦皇家学会A会议录,2015年,第1卷。 471,否。 2179,艺术。 否。 20150174 https://doi.org/10.1098/rspa.2015.0174 [6] A. Kossoy,A.I。 Frenkel,Q。Wang,E。Wachtel和I. Lubomirsky,CE 0.8 GD 0.2 O 1.9中的局部结构和应变诱导的失真,高级材料,2010年,第1卷。 22,否。 14,pp。 1659–1662。 https://doi.org/10.1002/adma.200902041 [7] W. Zhang,F。Cheng,F。Cheng,J。Huang,H。Yuan和Q. Wang,调查扭曲的扭曲的单轴菌株的调查很少,几层MOS 2,Physicals 2,Physicals Letters,2021,2021,Vol。 418,艺术。 否。 127709。https://doi.org/10.1016/j.physleta.2021.127709 [8] A.E. 97,否。 否。Liu,G。Song和H.M. Yin,边界对含有不均匀性的半无限制固体弹性领域的效果//伦敦皇家学会A会议录,2015年,第1卷。471,否。2179,艺术。否。20150174 https://doi.org/10.1098/rspa.2015.0174 [6] A. Kossoy,A.I。Frenkel,Q。Wang,E。Wachtel和I. Lubomirsky,CE 0.8 GD 0.2 O 1.9中的局部结构和应变诱导的失真,高级材料,2010年,第1卷。22,否。14,pp。1659–1662。https://doi.org/10.1002/adma.200902041 [7] W. Zhang,F。Cheng,F。Cheng,J。Huang,H。Yuan和Q. Wang,调查扭曲的扭曲的单轴菌株的调查很少,几层MOS 2,Physicals 2,Physicals Letters,2021,2021,Vol。418,艺术。否。127709。https://doi.org/10.1016/j.physleta.2021.127709 [8] A.E.97,否。否。Romanov,P。Waltereit和J.S. 斑点,氮化物半导体中埋葬的应激源:对电子特性的影响,应用物理学杂志,2005年,第1卷。 4,艺术。 043708。https://doi.org/10.1063/1.1851016Romanov,P。Waltereit和J.S.斑点,氮化物半导体中埋葬的应激源:对电子特性的影响,应用物理学杂志,2005年,第1卷。4,艺术。043708。https://doi.org/10.1063/1.1851016