目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。
摘要 当输入点来自结构化配置(例如二维 (2D) 或三维 (3D) 网格)时,许多实际应用都要求计算凸包 (CH)。网格空间中的凸包已应用于地理信息系统、医学数据分析、机器人/自动驾驶汽车的路径规划等。用于 CH 计算的传统和现有的 GPU 加速算法不能直接在以矩阵格式表示的 2D 或 3D 网格上运行,并且不能利用这种光栅化表示中固有的顺序。这项工作引入了新颖的过滤算法,最初为 2D 网格空间开发,随后扩展到 3D 以加速外壳计算。它们进一步扩展为 GPU-CPU 混合算法,并在商用 NVIDIA GPU 上实现和评估。对于 2D 网格,对于 ( n × n ) 网格,贡献像素的数量始终限制为 ≤ 2 n。此外,它们是按字典顺序提取的,从而确保了 CH 的高效 O(n) 计算。同样,在 3D 中,对于 (n×n×n) 体素矩阵,贡献体素的数量始终限制为 ≤ 2n2。此外,2D CH 滤波在 3D 网格的所有切片上并行启用,从而进一步减少了要输入到 3D CH 计算过程的贡献体素的数量。与最先进的方法相比,我们的方法更胜一筹,尤其是对于大型和稀疏的点云。
现代机器学习中的随机优化方法通常需要仔细地调整算法参数,以大量的时间,计算和专业知识。这种现实导致人们对开发自适应(或无参数)算法的持续兴趣,这些算法需要最小或不需要调整[1、2、4-8、10-10-15、17-20]。但是,这些适应性方法通常比非自适应对应物的次级次数范围更差。存在“尽可能自适应”,还是有改进的空间?换句话说,是否有基本价格要支付(按照收敛速度),因为不知道问题参数吗?为了回答这些问题,我们从算法游戏理论中的“无政府状态价格” [16]中汲取了灵感,并介绍了“适应性价格”(POA)。大致说明,由于问题参数的不确定性,POA衡量了次优的乘法增加。我们显示了以下非平滑随机凸优化的POA下限:
从高维凸体中生成随机样品是无数连接和应用的基本算法问题。[DFK91]的著名结果的核心是用于计算凸体体积的随机多项式算法,是第一个用于均匀采样凸体的多项式时间算法。在此后的几十年中,对抽样的研究已导致其算法复杂性的一系列改进[LS90,LS93,KLS97,LV06,CV18],通常基于发现的新数学/几何结构,建立了与其他领域的连接(例如,均具有新的工具),并开发了新的工具(例如并分析马尔可夫连锁店。随着数据的扩散和机器学习的越来越重要,取样也已成为一种必不可少的算法工具,应用采样器需要非常高的尺寸的采样器,例如科学计算[CV16,HCT + 17,KLSV22] Sta20]。凸体的采样器基于马尔可夫链(有关摘要,请参见§A)。他们的分析是基于关联的马尔可夫链的电导限制,后者又界定了混合速率。分析电导需要将精致的几何参数与(Cheeger)凸体的(Cheeger)等级不平等相结合。后者的原型示例如下:对于任何可测量的分区S 1,s 2,s 3的凸形身体k r d,我们有
减薄硅芯片在柔性基板上的倒装芯片组装 Tan Zhang、Zhenwei Hou 和 R. Wayne Johnson 奥本大学 阿拉巴马州奥本 Alina Moussessian 和 Linda Del Castillo 喷气推进实验室 加利福尼亚州帕萨迪纳 Charles Banda 物理科学实验室 摘要 将减薄硅芯片(25-100 µ m)组装到柔性基板上为从智能卡到太空雷达等各种应用提供了超薄柔性电子产品的选择。对于高密度应用,可以通过堆叠和层压预组装和测试的柔性层然后处理垂直互连来制造 3-D 模块。本文介绍了将减薄芯片倒装芯片组装到聚酰亚胺和液晶聚合物 (LCP) 柔性基板上的工艺。已经开发出两种用于聚酰亚胺和 LCP 柔性基板的组装方法。在第一种方法中,将焊料凸块芯片回流焊接到图案化柔性基板上。需要使用夹具在回流期间保持柔性基板平整。回流之后是底部填充分配和固化。底部填充分配工艺对于避免底部填充流到薄硅片顶部至关重要,我们将在下文中讨论这一工艺。在第二种方法中,通孔通过聚酰亚胺或 LCP 蚀刻,露出接触垫的底面。将焊膏挤入通孔,回流并清洗,在通孔中形成焊料“凸块”。对浸焊产生的具有低轮廓焊料凸块的芯片进行焊剂处理、放置和回流。然后对芯片进行底部填充。这种方法可降低总组装厚度。简介为了满足单芯片和堆叠芯片封装中不断降低的轮廓要求,正在开发薄芯片的组装工艺。1-4 柔性基板(25-50 µ m)提供了一种进一步减小封装厚度的方法。减薄的 Si-on-flex 结构也有利于太空应用。减薄的 Si 虽然易碎,但也很灵活。减薄的 Si-on-flex 可以卷成管状进行发射,并在太空中展开,从而形成带有集成电子设备的大面积天线。组装减薄的 Si-on-flex 必须解决的问题包括:基板设计和制造、减薄后的凸块、芯片处理、回流期间的基板平整度和底部填充分配。这些将在以下章节中讨论。基板本工作中使用了两种柔性基板材料:聚酰亚胺和液晶聚合物 (LCP)。LCP 特性包括 100GHz 下的良好介电性能、低吸湿性和极低的透湿性。5-13 LCP 的热膨胀系数 (CTE) 可以在 LCP 薄膜的双轴挤出过程中控制。市售薄膜的 CTE 为 8 和 17ppm/o C。在本工作中使用 8ppm/o C LCP 薄膜。在用于倒装芯片组装的传统柔性基板设计中,铜芯片连接点的图案化位置与芯片组装位置在柔性薄膜的同一侧(图 1)。阻焊层用于定义可焊焊盘区域(顶面设计)。另一种方法是蚀刻聚酰亚胺或 LCP 通孔,露出铜焊盘的底面(背面设计)。通孔通过激光钻孔或反应离子蚀刻 (RIE) 制成。倒装芯片从铜图案的对面组装(图 2),从而无需阻焊层并减小了总厚度。这种方法的另一个优点(低轮廓凸块)将在后面介绍。顶面聚酰亚胺基板由约翰霍普金斯大学应用物理实验室制造,而激光钻孔背面 LCP 设计由 STS ATL 公司制造。背面 (RIE) LCP 和聚酰亚胺基板由奥本大学制造。只需一层金属即可布线菊花链芯片互连图案。
倒装芯片凸块电迁移可靠性比较(铜柱、高铅、锡银和锡铅凸块) 倒装芯片凸块电迁移可靠性比较(铜柱、高铅、锡银和锡铅凸块)
摘要:随着电动汽车产业的发展,电动汽车为人们提供了更多的选择,但电动汽车的性能还有待提高,使得大部分消费者持观望态度,因此寻找一种能够有效提高电动汽车性能的方法具有重要意义。针对目前电动汽车的性能问题,提出一种凸优化算法对电动汽车的电机模型和动力电池参数进行优化,提高电动汽车的整体性能。对比了所提凸优化算法、双环DP优化算法、非线性优化算法的性能。结果表明:经凸优化算法优化后的电动汽车氢气消耗量为95.364 g,低于优化前DCDP优化算法的98.165 g和非线性优化算法的105.236 g,也明显优于优化前电动汽车的125.59 g。凸优化算法优化的计算时间为4.9 s,低于DCDP优化算法和非线性优化算法。上述结果表明凸优化算法具有更好的优化性能。使用凸优化算法对动力电池进行优化后,电动汽车的整体性能更高。因此,该方法可以有效改善目前电动汽车动力电池的性能,使新能源汽车迅速发展,改善我国日益严重的环境污染和能源危机。