•成本限制和统一补贴:从2024年开始,联邦对热泵装置的资金将被汇入技术特定的扁平利率补贴。空气/水热泵最多可获得25.383欧元的资金,盐水/水/水/水泵装置最多可获得37.252欧元的资金。考虑不同的投资成本,不同的加热系统有差异化的固定费率。例如,与本地或地区供暖有关的单户住宅和多户住宅物业的统一利率为15.000欧元。虽然安装水或盐水热泵,并用23.000欧元进行补贴。•技术变化:重要的技术变革涉及热泵热出口温度,该温度已从40°C提高到55°C,从而提高了标准效率和应用选项。•符合条件的成本:这些包括物理系统的成本,例如热泵,计划成本,热源系统,集成到现有的供暖系统中,中央供暖控制,供暖存储,供暖电气安装以及退役锅炉和水箱系统的拆卸和处置成本。•社会支持和资助过程:“所有的清洁供暖”支持低收入家庭的新型家庭成本的100%。在线应用程序始于特定项目想法的注册。•用于不同建筑物类型的资金:资金取决于建筑物的类型。也提供不同的单户和梯田房屋的资金率。进行审查,对于多层公寓楼,从联邦政府提供的基本资金高达45.000欧元,以及某些措施的额外奖金。
说明此信息请求(RFI)旨在为美国能源部(DOE)太阳能技术办公室(SETO)提供有关特定研究,开发和演示机会,以实现接收者的近期部署,以集中太阳能电力(CSP)工厂,以及CSP Industries的反应堆。背景是建立清洁,公平的能源经济并解决气候危机,Seto投资于创新的研究,开发和演示(RD&D)项目,这些项目致力于降低太阳能技术的成本并开发准备商业化的下一代产品。此RFI寻求信息来帮助促进到2035年实现无污染的无污染的目标,并“提供公平,清洁的能源未来,并使美国踏上了达到2050年不晚于经济范围的零净排放的途径。” 1 DOE致力于通过研究,开发,演示和部署(RDD&D)来推动科学和工程的前沿,促进清洁能源的工作,并确保环境正义以及服务不足的社区的包容。CSP是可再生能源的独特之处,可以与长持续热量存储(TES)耦合以驱动高效率的功率周期。由于需要较长的能量存储时间来启用清洁电网,因此CSP值的案例更强。要成功填补这一角色,CSP的成本必须继续通过世代的技术转变而下降。发电中的艺术状态使用熔融盐塔,温度高达540°C。到2030 SETO的目标是CSP升级的电力成本(LCOE)为每千瓦时0.05美元(kWh),部分由电动周期启用,该电动周期比当今的蒸汽兰肯周期更有效,更便宜。在3代CSP(GEN3)技术上使用DOE资金进行研究,其功率周期温度的特定目标≥715C,并且周期效率≥50%,LCOE <$ 0.05/kWh。粒子技术在出口温度下示范≥700⁰C
全球有数千万个废弃开采井(AEW),不仅对环境构成威胁,而且退役需要额外投资。AEW 的恢复为地热能开发提供了一种经济有效的解决方案,可节省退役和钻井的高昂成本。然而,AEW 的热资源通常为低品位和中等品位。应采取措施提高 AEW 地热发电厂的效率。同时,世界各地的卫星液化天然气(LNG)站的再气化过程遭受高品位冷能的损失。各种研究都利用地热热和 LNG 冷来发电,但尚未讨论 AEW 的水平延伸可能增加回收温度,以及 LNG 流量的波动可能降低电力输出。本研究提出并评估了一种新型综合有机朗肯循环 (ORC) 系统,该系统利用来自 AEW 的地热和来自卫星 LNG 站的废弃 LNG 冷能,重点是通过水平延伸提高地热温度和通过热能储存稳定 LNG 冷能供应。建立了一个考虑 AEW 水平延伸的数值模型,发现水平延伸可显著提高地热流体温度。建立了一个基于机器学习的预测模型,以评估给定参数和工作条件下的 AEW 出口温度。设计和优化了冷热能储存 (CTES) 模块,以在非设计运行期间暴露于高度波动的 LNG 供应时稳定废弃冷能回收。CTES 将 ORC 效率提高了 38.5%,并有可能显著缩短投资回收期。因此,利用AEW的水平延伸,将发电与通过热能储存获得的LNG冷能相结合,零排放地热和废冷能系统可以成为未来AEW振兴和LNG废冷能利用的可行解决方案。
摘要:减少全球二氧化碳排放量需要采取跨部门措施来减少化石能源消耗并加强可再生能源的扩张。实现这一目标的一个要素是热能存储系统。由于它们具有时间解耦操作,因此可以提高各种工业和发电厂流程中的系统效率和灵活性。在电力和热力领域,此类解决方案已在商业上可用于大规模应用或专注于各种研发项目,但在运输领域则大多是新事物。通过将现有概念专门转移到电池电动汽车的供热要求,也可以在运输领域实现效率改进。其想法是通过先前电加热的热能存储系统在寒冷季节为车内提供所需的热量。因此,可以节省电池容量,并增加车辆的有效行驶里程。这一概念的基本先决条件是高系统存储密度和高性能,这必须与商用电池供电的 PTC 元件相适应。与大规模应用相比,这带来了新的挑战和设计解决方案,最终需要在车辆典型规格下进行概念验证和实验测试。首次开发并建设性地实现了一种基于陶瓷蜂窝、集成加热丝和双壁隔热储存容器的新型热能存储系统。该存储系统满足供热的所有要求,达到了高系统存储和功率密度,并且由于其高灵活性,允许双功能操作使用:循环存储和传统加热模式。在集中存储操作中,在充电期间通过加热丝电产生高温热量,并通过热辐射有效地传输到陶瓷蜂窝。在放电期间(驾驶),存储的热能由旁路控制系统用于在高热输出下在规定温度下加热内部空间。系统测量活动和成功的模型验证证实,充电期间电加热功率高达 6.8 kW,放电期间供热功率超过 30 分钟,热输出功率为 5 kW。尽管目前基础设施和试验台存在限制,但仍可达到 155 Wh/kg 的高系统存储密度,且放电出口温度恒定。与电池供电的加热系统相比,所开发的热能存储系统的实验结果证实,由于其高性能、操作灵活性和低成本材料,该系统具有出色的竞争力。
摘要 闭环地热工作组是一项合作研究,由美国能源部 (DOE) 地热技术办公室 (GTO) 资助,旨在了解从地热储层闭环系统(即边际工作流体损失)产生热能和机械能的潜力和局限性。在这项研究中,来自四个国家实验室的科学家和工程师团队以及专家小组成员正在应用数值模拟器和分析工具来模拟闭环地热系统的热回收,然后使用这些模型中的出口温度和压力与时间的关系来预测两个经济指标:1) 平准化供暖成本 (LCOH) 和 2) 平准化电力成本 (LCOE),涵盖一系列钻井成本。研究中应用的数值模拟器和分析工具(包括用于技术和经济分析的工具)是由参与机构开发的,可独立计算能源生产和经济预测,从而提高分析的可信度。该研究旨在调查一系列系统配置、工作流体、地热储层特性、运行周期和传热增强。在研究的第一年,重点关注了水作为闭环系统中的工作流体,闭环系统要么具有 U 形配置,要么具有同轴配置。第一年的主要目标是确定热能和机械能回收的上限以及每种情况下的最佳操作和配置参数,并了解系统性能的限制因素。研究第一年的一个重要成果是,使用径向简单离散化的模型(即轴对称模型)的模拟结果优于更传统的在钻孔周围进行精细离散化的数值模拟和嵌入式钻孔建模方法。此外,轴对称模型与现有的现场观测和分析模型相比效果良好,并被证明具有数值效率。在研究的第二年,我们创建了一个包含 240 万个模拟场景的数据库,该数据库涵盖了闭环系统在生产温度和压力与时间方面的表现,涉及九个场景参数:1) 水和超临界 CO2 (scCO2) 工作流体,2) U 形和同轴配置,3) 质量流速,4) 热导率,5) 地热梯度,6) 垂直深度,7) 水平范围,8) 入口温度,9) 钻孔直径。然后,针对一系列钻井成本,针对 240 万个场景中的每一个计算 LCOH 和 LCOE。对于 LCOE,使用有机朗肯循环(用于水)或直接涡轮膨胀循环(用于 scCO2)计算发电量。该数据库以分层数据格式 (HDF5) 文件结构存储,可在地热数据存储库 (GDR) 上获取。配套论文介绍了通过 Python 脚本从数据库中提取信息的方法以及执行经济分析的方法。本文概述了闭环工作组的研究,包括第一年和第二年的主要成果以及关于一系列钻井成本下 LCOH 和 LCOE 的最佳配置的讨论。
图 1. SMR 研究团队组织结构图...................................................................................................... 23 图 2. 左图:库克核电站应急准备地图[50]。右图:印第安纳州密歇根州电力网覆盖范围[49]......................................................................................................... 32 图 3. 本研究中审查的反应堆,按冷却剂类型排序 [7]......................................................................... 34 图 4. 本研究中审查的反应堆,作为出口温度和功率输出(MWth)的函数 [7]......................................................... 35 图 5. 国家能源局 SMR 仪表板识别的 SMR 类型管道状态 [7]......................................................... 35 图 6. 国家能源局 SMR 仪表板识别的 SMR 许可进度。[7]......................................................... 37 图 7. SMR 许可活动在各国核安全监管机构中的分布。 [7] ................................................................................................................................ 37 图 8. 按冷却剂类型组织的各种 SMR 设计示例列表 .............................................................. 40 图 9. SMR-300 反应堆 [80] ........................................................................................................ 48 图 10. BWRX-300 RPV 内部图 [62] ...................................................................................... 49 图 11. VOYGR 反应堆模块 [88]............................................................................................. 51 图 12. Rolls-Royce SMR 发电站 [92] ............................................................................................. 53 图 13. Xe-100 燃料和核心图 [98] ........................................................................... 54 图 14. 钠反应堆建筑示意图 [104] ......................................................................... 56 图 15. KP-FHR 反应堆设计 [110] ........................................................................................ 58 图 16. 2022 年至 2030 年期间美国能源消费预期增长的因素 [122] ............................................................................................. 63 图 17. 自 1950 年以来美国的新增装机容量 [124] ............................................................................. 63 图 18. 印第安纳州按燃料类型划分的发电量 [126] ............................................................................. 64 图 19. 核电站按月停运情况 [130] ............................................................................. 65 图 20. 加权等效强制停运率 [132] ............................................................................. 66 图 21. 印第安纳州枢纽的日前和实时价格(2021-2023) [135] .............................. 67 图 22。2010 年 11 月法国核反应堆的负荷跟踪 [136] .............................................................................. 68 图 23. 许可和批准要求概述 .............................................................................................. 71 图 24. 施工许可流程 [146] .............................................................................................. 72 图 25. 运行许可流程 [146] ...................................................................................................... 73 图 26. COLA 流程 [146] ...................................................................................................... 74 图 27. 左图:MISO 服务的美国区域 [166]。右图:PJM 互联网络服务的美国区域 [167] ......................................................................................................................... 78 图 28. 反应堆生命周期的简化示例 [168](图中的块大小与每个过程所需的时间无关) ............................................................................. 79 图 29. NuScale 2018 年的预计时间表 [169] ......................................................................................... 80 图 30. 核电项目时间表说明 [176] ......................................................................................... 82 图 31. 自 2000 年以来全球新核电建设成本 [178] ......................................................................... 84 图 32. 各国家/地区建造的反应堆 [179] ......................................................................................... 85...................................................................... 85...................................................................... 85