海上温度和热浪的上升对全世界的珊瑚礁构成了重大威胁。属于弧菌属的途径尤其是由于它们与温度相关疾病的关联,后者在人类和珊瑚[1]和珊瑚[2]中均表现出峰值感染率。夏季温度的升高与霍乱病原体的弧菌病原体的爆发爆发相关,突出了温度对弧菌致病性的直接影响[3],尽管与温度相关感染的特定机制仍然被忽略了。弧菌Coralliilyticus是对温度波动敏感的机会性珊瑚病原体,感染多种珊瑚种类,并对礁生态系统构成全球威胁,尤其是当温度超过27°C时[4]。尽管珊瑚宿主具有多种防御机制,但细菌如V。Coralliilyticus发展了殖民和入侵的多种策略。先前的研究已经探索了这些策略,包括蛋白酶和血素蛋白的分泌,运动能力的调节以及通过预言诱导与共生细菌的竞争[2,5]。在发表在《 PLOS生物学》中发表的研究中,Mass及其同事揭示了V中2型VI型分泌系统(T6SS)的激活。在高温下[6]。他们确定了由T6SS1和T6SS2部署的抗核效应器排放的一系列抗菌效应器(图1),使其能够绕开珊瑚宿主的防御机制。这一发现加强了珊瑚病原体侵入和感染珊瑚的多功能策略。珊瑚微生物组在维持珊瑚健康中起着至关重要的作用。珊瑚动物与光合性内共生鞭毛藻和各种微生物,包括细菌,真菌,古细菌和噬菌体的多种微生物。罗森伯格(Rosenberg
我们开发了一种将CRISPR -CAS遗传工具引入细菌的不同方法。在细菌结合期间,松弛酶通过IV型分泌系统共同连接到DNA上。通过将CAS蛋白与弛豫酶融合在一起,我们观察到受体细胞中的功能性CAS活性,从而消除了这些细胞中核酸酶表达的需求。转移的DNA分子可以提供引导RNA和供体DNA,从而通过重组实现无缝的遗传修饰。我们还将松弛酶的融合到受体细胞中活性的基础编辑器。这些是迄今为止最大的蛋白质底物。此方法可以应用于任何受体细胞,尤其是野生 - 缺乏可用遗传工具的细菌菌株。
收到日期:2018 年 10 月 7 日;接受日期:2019 年 12 月 9 日;发布日期:2020 年 2 月 14 日 作者隶属关系:1 美国密西西比州密西西比州立大学兽医学院;2 德国黑森州吉森 35392 尤斯图斯-李比希大学生物信息学和系统生物学;3 美国阿肯色州杰斐逊市国家毒理学研究中心/FDA 微生物学部。 *通讯作者:马克·L·劳伦斯,lawrence@cvm.msstate.edu 关键词:Edwardsiella ictaluri;Edwardsiella piscicida;比较基因组学;IV 型分泌系统;直系同源性;移动组学。缩写:ANI,平均核苷酸同一性;NCBI,国家生物技术信息中心;SRV,得分比值;T1SS,I 型分泌系统; T2SS,II 型分泌系统;T3SS,III 型分泌系统;T4SS,IV 型分泌系统;T5SS,V 型分泌系统;T6SS,VI 型分泌系统。数据声明:所有支持数据、代码和协议均已在文章中或通过补充数据文件提供。补充材料可在本文的在线版本中找到:https://doi.org/10.6084/m9.figshare.8956550.v1 . 000322 © 2020 作者
铜绿假单胞菌是一种革兰氏阴性细菌,引起免疫功能低下个体的感染。该病原体是Eskape病原体之一(包括粪肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,baumanii,p.eruginosa,p.eruginosa,肠杆菌,肠杆菌,肠杆菌。),构成威胁生命的医院细菌(Hirsch和Tam,2010; Mulani等,2019)。铜绿假单胞菌还感染患有特定病理的患者,例如囊性纤维化(CF)。由于其形成生物膜的能力,铜绿假单胞菌通常会长期感染CF患者,并代表该疾病的负面结果(Malhotra等,2019)。为了成功地在宿主中建立自己,铜绿假单胞菌部署了一系列毒力因子,包括毒素,铁载体,粘附素和分泌系统(请参阅GONCgonçAlves-alves-de-albuquerque等人的评论,2016; Qin等,2022)。后者允许运输
在诸如血脑屏障之类的生物屏障中传递大分子,限制了它们在体内的应用。先前的工作表明,弓形虫弓形虫是一种自然从人肠道传播到中枢神经系统(CNS)的寄生虫,可以将蛋白质传递给宿主细胞。在这里,我们设计了T. gondii的内源性分泌系统,晶状体和致密颗粒,通过转化为毒素和gra16,将多个大型(> 100 kDa)治疗蛋白传递到神经元中。我们证明了使用成像,下拉测定,SCRNA-SEQ和荧光记者的培养细胞,脑器官和体内的递送以及探针蛋白活性。我们证明了小鼠腹膜内给药后的强大分娩,并表征了整个大脑的3D分布。作为概念证明,我们证明了GRA16介导的MECP2蛋白的大脑递送,MECP2蛋白是RETT综合征的假定治疗靶标。通过表征系统的潜在和当前局限性,我们旨在指导更广泛应用所需的未来改进。
药物的靶向输送是成功治疗肿瘤等严重疾病的关键方面。为了实现肽类药物的高特异性和低尺寸限制的精确输送,合成的 3 型分泌系统 (T3SS) 由沙门氏菌致病岛-1 (SPI-1) 中编码的天然遗传系统改造而成,该系统不包含毒力效应物。在这里,我们测试了合成 T3SS 作为肽类药物输送机制的潜力,因为它具有模块化特性。首先,将合成 T3SS 的遗传系统引入非天然宿主大肠杆菌,之所以选择该宿主是因为它缺乏沙门氏菌驱动的毒力因子。接下来,测试了 Noxa 的线粒体靶向结构域 (MTD) 作为具有抗肿瘤活性的货物蛋白。为此,对编码 MTD 的基因进行工程改造,使其通过合成 T3SS 分泌,从而在 N 端得到标记的 MTD。当将携带合成 T3SS 和 MTD 的质粒大肠杆菌注射到肿瘤小鼠体内时,诱导后在肿瘤组织中可以清楚地检测到 N 端带有分泌标签的 MTD。此外,携带的 MTD 的细胞毒性活性可减缓肿瘤动物的肿瘤生长和死亡率。因此,这项研究通过植入专用的递送系统,增强了生物治疗细菌在肿瘤治疗中的应用。
1中医研究中心,中国长春大学医学后的后期医院,中国长春; lqj19811005@163.com 2中国吉林农业科学技术大学中医学院,中国长春132101; ziliaowlp@163.com 3州诊断和治疗严重人畜共患感染疾病的州关键实验室,教育部人畜共患病研究的主要实验室,人畜共患病研究所,兽医学院,兽医学院,吉林大学,吉林大学,吉林大学,长春130062; XU18626969503@163.com(J.X. ); 15504421028@163.com(Z.S. ); chentt20@mails.jlu.edu.cn(t.c. ); dengxm@jlu.edu.cn(X.D.) 4 Jilin Jinziyuan Biotech Inc.,Shuangliao 136400,中国; jzyliushuang@126.com 5动物科学与兽医学院,山东农业科学学院,吉南250100,中国 *通信: ); lvqianghua129@163.com(q.l.) †这些作者为这项工作做出了同样的贡献。1中医研究中心,中国长春大学医学后的后期医院,中国长春; lqj19811005@163.com 2中国吉林农业科学技术大学中医学院,中国长春132101; ziliaowlp@163.com 3州诊断和治疗严重人畜共患感染疾病的州关键实验室,教育部人畜共患病研究的主要实验室,人畜共患病研究所,兽医学院,兽医学院,吉林大学,吉林大学,吉林大学,长春130062; XU18626969503@163.com(J.X.); 15504421028@163.com(Z.S.); chentt20@mails.jlu.edu.cn(t.c.); dengxm@jlu.edu.cn(X.D.)4 Jilin Jinziyuan Biotech Inc.,Shuangliao 136400,中国; jzyliushuang@126.com 5动物科学与兽医学院,山东农业科学学院,吉南250100,中国 *通信:); lvqianghua129@163.com(q.l.)†这些作者为这项工作做出了同样的贡献。
肠道微生物群落在宿主健康,调节生理途径和预防病原体增殖中起着至关重要的作用。这些社区的成员也经常争夺空间和营养,有些人获得了专门的武器,将毒素输送到邻近的细胞中,例如VI型分泌系统(T6SSS)。大多数对T6SS的研究都集中在细菌毒力上,但本研究调查了它们在蜜蜂肠中有益共生体中的作用。使用T6SS的遗传操纵和蜜蜂接种实验,我们证明了S. alvi使用这些系统来超过相关的细菌菌株,并与宿主免疫途径相互作用。这些发现扩展了我们对T6SS与有益共生体如何塑造微生物组和影响宿主生理学的理解。
4型分泌系统是大型且用途广泛的蛋白质,可通过水平基因转移促进抗生素耐药性和其他毒力因子的传播。共轭类型4分泌系统依赖于放松酶来处理DNA以准备运输。trai来自研究良好的质粒PKM101就是一种这样的松弛酶。在这里,我们报告了TRAI与其底物DNA复合物的跨酯酶结构域的晶体结构,突出了共轭弛豫酶的保守DNA结合机理。此外,我们还提出了TRAI的跨酯酶结构域的APO结构,其中包括大多数动力的拇指区域。这使我们第一次可以看到DNA结合时拇指子域的大构象变化。我们还表征了跨酯酶结构域,解旋酶结构域和全长TRAI的DNA结合,缺口和宗教活动。与文献中的先前指示不同,我们的结果表明,来自PKM101的Trai转源酶结构域以保守的方式表现出R388和F质粒的同源物。
边缘无形体是全球分布的最普遍的蜱传牲畜病原体。牛无形体病对养牛业构成了重大威胁。通过接种脾切除小牛产生的活中心无形体疫苗,可以预防流行地区的无形体病爆发。由于中心无形体活疫苗可携带其他病原体并导致成年牛患病,因此研究工作致力于开发安全的重组亚单位疫苗。先前的研究发现,边缘无形体 IV 型分泌系统 (T4SS) 的亚优势蛋白和亚优势延伸因子-Tu (Ef-Tu) 参与了用边缘无形体外膜 (OM) 免疫的牛对实验性攻击的保护性免疫。本研究评估了在大肠杆菌中克隆和表达的重组 VirB9.1、VirB9.2、VirB10、VirB11 和 Ef-Tu 蛋白赋予的免疫原性和保护性。将 20 头公牛随机分成 4 组 (G),每组 5 头。G1 和 G2 组的牛分别用 50 μ g 重组蛋白与 Quil A ® 或 Montanide ™ 佐剂的混合物进行免疫。G3 和 G4 (对照) 组的牛分别用 Quil A 和 Montanide 佐剂进行免疫。牛每隔三周进行四次免疫,并在第四次免疫后 42 天用 10 7 A . marginale 寄生红细胞进行攻击。攻击后,所有牛均出现临床症状,红细胞压积显著下降,寄生红细胞显著增加 (p < 0.05),需要用土霉素治疗以防止死亡。免疫组诱导的 IgG2 水平与观察到的缺乏保护无关。需要额外的策略来评估这些蛋白质的作用及其在开发有效疫苗中的潜在效用。