7.5 响应随辐射入射角的变化。.............16 7.5.1 要求 - β辐射。...............................16 7.5.2 测试方法 ........................................ 16 7.5.3 要求 - 光子辐射 .。。。。。。。。。。。。。。。。。。。。。。。。..16 7.5.4 测试方法 .............................................. 16 7.6 剂量当量读数的保留 .................。。。。。。。。。。。。16 7.6.1 要求............................................ 16 7.6.2 测试方法 ............................................ 18 7.7 剂量当量剂量计的剂量当量率依赖性 .......18 7.7.1 要求............................................ 18 7.7.2 测试方法(仅型式试验) ............................18 7.8 过载特性。.....。。。。。。。。。。。。。。。。。。。。。。。。.........19 7.8.1 要求........................................ 19 7.8.2 测试方法 ........................................ 19 7.8.2.1 剂量当量剂量计 ........................ 19 7.8.2.2 剂量当量率剂量计 ........................ 19 7.9 对混合辐射场的响应。.......。。。。。。。。。。。。。。。。。。。。。。19 7.9.1 要求...................................... ... 19 7.9.2 测试方法 .............................................. 19 7.10 对中子辐射的响应 .............。 。 。 。 。 。 。 。 。 . . . . . . div> . . . . . . . 20 7.1 0.1 要求 . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 20 7.10.2 测试方法。 . . . . < div> 。 。 。 。 。 。 。。。。。。。。。。...... div>.......20 7.1 0.1 要求 ...... div>.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>20 7.10.2 测试方法。....< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
剂量当量I-131反应堆冷却剂比活度限值与反应堆冷却剂比活度>1pCi/克时额定热功率百分比 剂量当量I-131 。...............3/4 4-30
ALARA 尽可能低 ALI 年度摄入量限制 ANSI 美国国家标准协会 ARDL 学术、研究与开发和其他许可证 AU 授权用户 bkg 背景 Bq 贝克勒尔 CDE 承诺剂量当量 CEDE 承诺有效剂量当量 CFR 联邦法规 Ci 居里 cpm 每分钟计数 DAC 衍生空气浓度 DCF 剂量换算因子 DDE 深度剂量当量 DFP 退役资助计划 DHS 威斯康星州卫生服务部 DIS 存储衰变 DOE 美国能源部 DOT 美国运输部 dpm 每分钟衰变次数 dps 每秒衰变次数 EDE 有效剂量当量 EPA 美国环境保护署 F/A 财务保证 FR 联邦公报 GBq 吉贝克勒尔 GC 气相色谱仪 GM 盖革-米勒 Gy 格雷 IN 信息通知 LLW 低放射性废物 LSA 低比活度 LSC 液闪计数器 MBq兆贝克勒尔 mCi 毫居里 mGy 毫戈瑞 ml 毫升 mR 毫伦琴 mrem 毫雷姆 mSv 毫西弗 µCi 微居里 µR 微伦琴 NaI 碘化钠 NCRP 国家辐射防护与测量委员会 NIST 国家标准与技术研究所 NMSS 核材料安全与保障办公室 NRC 美国核管理委员会
– 所有 ICRP 116 器官(33 种 IREP 模型) – 男性和女性 – 中子(32 种中子能量)和光子(20 种光子能量) – AP、ROT 和 ISO 几何形状 – Hp(10)(个人深剂量当量)和暴露剂量 – 4 个剂量计位置(胸部中央、左领口、腰部中央、左胸口袋)
ALARA 尽可能低 AMP 老化管理计划 CDE 承诺剂量当量 CFR 美国联邦法规 EFSC 能源设施选址委员会 EPA 美国环境保护署 EWEB 尤金水利电力局 FR 联邦公报 ISFSI 独立乏燃料贮存设施 LCA 许可证变更申请 LRA 许可证续期申请 MPC 多用途罐 NRC 美国核管理委员会 NDCC 俄勒冈州核能发展协调委员会 NTEC 俄勒冈州核能与热能委员会 OAR 俄勒冈州行政法规 ODOE 俄勒冈州能源部 OERS 俄勒冈州应急响应系统 ORS 俄勒冈州修订法规 PAG 防护行动指南 PGE 波特兰通用电气 PWR 压水反应堆 SAR 安全分析报告 SER 安全评估报告 SNC/BNFL 塞拉核能公司/英国核燃料有限公司 TEDE 总有效剂量当量 TLD 热释光剂量计 USDOE 美国能源部
NAVMED P-5055 CH-2 至 2011 年 2 月版本第 2 章 3。特殊研究。所需的特殊研究记录为:a。体检前 3 个月内进行白细胞计数 (WBC) 和血细胞比容 (HCT)。b. 尿液分析。体检前 3 个月内使用显微镜高倍视野对尿液进行红细胞检测。c. 40 岁及以上的女性需要进行乳房检查(手动和临床乳房检查)。平民女性工人可以由其平民提供者进行此项检查,并将文件提交给海军检查员。平民女性工人还可以提交乳房 X 线摄影检查的结果以供考虑。无需进行女性盆腔检查。d. 不再需要进行直肠指检 (DRE)。在第 18 栏中标记“未检查 (NE)”。 e. 此外,以下特殊研究可能适用: (1) 必须按照本手册第 3 章进行放射性物质的职业摄入和待计量有效剂量当量或待计量剂量当量的评估。(2) 当主管医生、放射卫生官员或放射卫生主管认为必要时,可以对身体组织、分泌物和排泄物进行放射性生物测定,以估计内部污染物的暴露量。如果指挥部缺乏执行适当放射性生物测定或执行承诺有效剂量当量或承诺剂量当量计算的能力,则必须向第 3 章中指定的支持设施之一提交援助请求。(3) 经 BUMED 负责人批准,可在适用的放射控制手册中提供因特定工作环境而需要进行特殊检查的额外要求。f. 第 2-2 条第 2 款列出的放射工作人员医疗资格更新周期不得延长以适应外部体检或特殊研究结果。未在第 2-2 条第 5b 款规定的范围内完成外部私人测试的工作人员将被暂时指定为不合格体检人员 (NPQ),其剂量计发放特权将被暂停,并在适用的情况下,被列入指挥部剂量测定不允许发放 (DINA)(取消资格)名单。当 RME 完成且工人身体合格时,必须恢复工人的剂量计发放特权。2022 年 12 月 2 日 2-5 CH-2
向空气中排放的放射性核素受《清洁空气法》国家有害空气污染物排放标准 (NESHAP) 的约束。对于美国能源部 (DOE) 场地,美国环境保护署 (EPA) 根据 40 CFR 第 61 部分 H 分部对除氡以外的放射性核素向空气中的排放进行监管。H 分部要求可能向环境空气中排放放射性核素的 DOE 运营机构向 EPA 发布年度合规报告,以证明场地符合每年 10 mrem 有效剂量当量 (EDE) 的剂量标准。虽然 H 分部监管的排放量考虑了释放到环境空气中的放射性物质,但法规中记录的剂量标准适用于由这些排放导致的所有后续途径(吸入、食入、外部剂量)的暴露。
根据 10 CFR 20.1301“公众个体剂量限值”,许可运营对公众个体的总有效剂量当量 (TEDE) 每年不得超过 1 毫西弗 [1 mSv,或 100 毫雷姆 (mrem)]。铀燃料循环设施(不包括运输和处置)还必须遵守美国环境保护署 (EPA) 在 40 CFR 第 190 部分“核电运营环境辐射防护标准”中制定的规定(参考12)。此外,10 CFR 20.1101(d) 要求持照人(除受下文讨论的 10 CFR 50.34a“控制废水中放射性物质释放的设备的设计目标——核动力反应堆”约束的持照人外)限制空气中放射性物质的释放,以使公众受到的最高个人剂量不超过每年 0.1 mSv (10 mrem)。
根据 10 CFR 20.1301“公众个体剂量限值”,经许可的核电站对公众个体的总有效剂量当量 (TEDE) 每年不得超过 1 毫西弗 [1 mSv,或 100 毫雷姆 (mrem)]。铀燃料循环设施(不包括运输和处置)还必须遵守美国环境保护署 (EPA) 在 40 CFR 第 190 部分“核电站运行环境辐射防护标准”(参考文献 10)中制定的规定。此外,10 CFR 20.1101(d) 要求持照人(除受下文讨论的 10 CFR 50.34a“控制废水中放射性物质释放的设备的设计目标 - 核动力反应堆”约束的持照人)限制空气中放射性物质的释放,以使公众所受最高个人剂量不超过每年 0.1 mSv (10 mrem)。
结果:在使用传统(n = 50)或 AI 透视系统(n = 50)进行手术的 100 名患者中,传统和 AI 透视系统在人口统计学、体重指数、手术类型以及手术或透视时间方面没有显著差异。与传统系统相比,AI 透视系统对患者的辐射暴露较低(中位剂量面积乘积 2,178 vs 5,708 mGym 2 ,P = 0.001),对内窥镜人员的散射效应较小(总深剂量当量 0.28 vs 0.69 mSv;差异为 59.4%)。在多元线性回归分析中,调整患者特征、手术/透视持续时间和透视系统类型后,只有配备 AI 的透视系统(系数 3,331.9 [95% 置信区间:1,926.8 – 4,737.1,P < 0.001)和透视持续时间(系数 813.2 [95% 置信区间:640.5 – 985.9],P < 0.001)与辐射暴露相关。