为了最大限度地减少环境和能源问题,分布式可再生能源在过去几十年中取得了显著的进步,尤其是风能和太阳能光伏发电,它们被视为现代电力系统发电的未来。将可再生能源整合到电力系统中需要使用先进的电力电子转换器,这对智能电网的范式提出了挑战,例如,提高效率、获得高功率密度、保证容错能力、降低控制复杂性以及缓解电能质量问题。本文对可再生能源应用的前端转换器(更具体地说是将可再生能源与电网连接的功率逆变器)进行了专门的回顾。值得注意的是,本文的目的并不是涵盖所有类型的前端转换器;重点仅放在基于电压源布置并允许电流或电压反馈控制的单相多级结构上,该结构仅限于五个电压电平。已建立的审查考虑了以下主要分类:(a)无源和有源功率半导体的数量;(b)容错特性;(c)控制复杂性;(d)特定无源元件(如电容器或电感器)的要求;(e)独立或分离直流链路电压的数量。整篇论文介绍了几种特定的五级前端拓扑结构,并对它们进行了比较,强调了每种拓扑作为可再生能源与电网接口候选者的优缺点。
摘要 在欧洲航天局赫歇尔空间天文台 (HSO) 的开发框架下,IMEC 设计了用于 PACS 仪器的冷读出电子器件 (CRE)。该电路的主要规格是高线性度、低功耗、高均匀性和工作温度为 4.2K(液氦温度,LHT)时的极低噪声。为了确保高产量和均匀性、相对容易的技术可用性以及设计的可移植性,该电路采用标准 CMOS 技术实现。电路在室温下可正常工作,这允许在集成和鉴定之前进行筛选,并且对生产产量和时间有重要影响。该电路安装在 Al 2 O 3 基板上以获得最佳电气性能。在同一基板上,集成了偏置信号生成、短路保护电路和电源线的去耦电容器。这导致基板相对复杂,包含 30 多个无源元件和一个芯片,通过导电和非导电胶以及近 80 个引线键合进行集成。因为探测器阵列在发射前要冷却到 4.2K,所以必须证明安装的基板在这种温度和恶劣环境下的可靠性和发射生存力。为此,在基板安装期间要验证每个组装步骤的质量和相关可靠性。这包括验证粘合材料的兼容性、优化粘合产量以及设备的温度循环(室温和 LHT 之间)。对鉴定模型的其他测试将侧重于质子和伽马射线辐照下的电路功能、低温振动测试以证明发射生存力,以及详尽的温度循环以鉴定组装程序。本文中,我们介绍了所开发电路的完整集成和鉴定,包括飞行模型生产过程中的组装和验证以及在鉴定模型上组装方法的鉴定。关键词 低温、远红外、LHT、鉴定、读出电子电路、系统集成。一、简介 光电导体阵列照相机和光谱仪 (PACS) [1,2] 是赫歇尔空间天文台 (HSO,原名 FIRST) [3] 上的三台科学仪器之一,赫歇尔空间天文台是欧空局“地平线 2000”计划中的第四个基石任务 [4]。PACS 使用两个 Ge:Ga 光电导体阵列 (25 x 16 像素),同时对 60 至 210 µm 波段进行成像。光电探测器
变容二极管调谐 LC 振荡器与分频器一起为 AM 和 FM 前端混频器提供 LO 信号。VCO 的工作频率约为 160 MHz 至 256 MHz。在 FM 模式下,LO 频率除以 2 或 3。这些分频器生成用于 FM 前端混频器以进行镜像抑制的同相和正交相位输出信号。在天气波段模式下,LO 信号直接相移以生成同相和正交相位信号。在 AM 模式下,LO 频率除以 6、8、10、16 或 20,具体取决于所选的 AM 波段。
Cvijanovic, M., Kirin, P., Plesa, D., Soko, J., Stamenov, S., Cikojevic, A., Kelemen,
丰富的氙气观测实验:•研究一种罕见的核衰减实验,称为中性剂量双β衰变•Nexo将在5000千克Xenon-136同位素中搜索中微子双β衰变(2 x 10 28核),从而使少数范围的腐烂范围及其范围的潜在腐烂范围•合并范围的范围范围,•用于从衰减中重建电子的动能的TPC•用于将生成的光信号转换为电信号的硅光化型(sipms)
德克萨斯大学奥斯汀分校主校区 (CAM) 的 BHD、RHD 和 PHD 维护和室内装修竞争性密封提案的规格
1 电子与仪器工程系,1 Shri GS 理工学院,印度中央邦印多尔 摘要:本文介绍了采用 CMOS 180nm 技术设计的前端光接收器。完成原理图后,通过 Cadence Virtuoso 工具进行仿真。在本设计中,作者使用的电源为 1.8V,频率范围在 1Hz 至 10GHz 之间,获得了各种参数的结果,例如 20μA 偏置电流、宽高比 W/L、输入共模电压范围在 800mv 和 1.72volts 之间。测量了开环增益等各种参数之间的权衡,并测量了开环增益、相位裕度等参数之间的权衡。获得的总增益为 98 dB。本文报告了模拟结果。索引词:模拟电路、两级运算放大器、宽高比、180nm、光接收器、CADENCE。
的夹角 ; R 为激光雷达与目标物体的距离 ; T t 、 T r 、 T a 分别为发射 、 接收 、 传输系统的效率 。 前端光学系统
摘要 联合通信和无线电传感 (JC&S) 在过去几年中引起了广泛关注。该技术的优势包括降低成本、减小尺寸和功耗。随着 JC&S 系统的进一步发展,它有可能用于下一代蜂窝网络、物联网和即将到来的应用(如工业 4.0),在这些应用中,单个系统能够执行各种各样的功能或任务。该技术的引入将提高系统的性能和安全性。尽管通信和无线电传感使用类似的射频 (RF) 前端,但这两种技术的规格主要在带宽和线性方面有所不同。在本次调查中,对雷达和通信系统的规格进行了详细研究。为了使 RF 前端在雷达和通信模式下有效运行,必须在频率、带宽、增益和线性方面具有可重构性。在本次调查中,我们研究了不同频率、带宽、增益和线性可重构低噪声放大器 (LNA) 和下变频混频器架构。讨论了每种架构的优缺点,并总结了文献中可重构 LNA 和下变频混频器的性能。最后,根据其性能推导出 JC&S 的可能拓扑结构。