1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
摘要 本研究调查了安装在螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统在净推力损失最小的情况下支持前向力。矢量系统本身既可以放置在独立螺旋桨配置中,也可以放置在机翼内螺旋桨配置中。代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。灵敏度分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显着改善。实现了推力矢量控制,随后俯仰力矩发生变化,在两种螺旋桨俯仰情况下,叶片偏转角逐渐增加:75° 和 90°。标准 90° 俯仰方向的集成式机翼螺旋桨系统的风洞试验结果显示,在前进比低于 0.3 时,推力矢量控制成功,这对于大多数相关应用而言都是实用的;螺旋桨叶片系统的 75° 俯仰方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式情况具有更好的推力矢量控制能力。致谢 衷心感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究计划提供的支持。另一位重要的捐助者蔡杰龙先生(Jacky)对本作品在整个过程中给予的持续指导深表感谢。
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam
使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。