本文介绍了一种用于捕获离子的量子实验中磁场噪声的前馈补偿系统。该补偿系统在两个实验装置中实现,一个用于量子模拟,另一个用于精密光谱学。在这两个实验中,量子比特都被编码在一对捕获的 40 Ca + 离子的电子能级中。补偿系统用于抑制实验室中由 50 Hz 电源线引起的环境磁场噪声。基于磁场线圈和函数发生器的前馈系统采用一种简单的技术方法,以产生调制磁场。前馈补偿系统的工作原理是施加异相磁场,以破坏性地叠加离子位置的磁场噪声。对于函数发生器,使用可编程的 RedPitaya 板。在这项工作中,为该板开发了一个控制软件,允许补偿系统快速运行。此外,还开发了一个实验序列,其中离子量子比特被用作量化磁场噪声的传感器。该实验依赖于 CPMG π 脉冲序列。
线性和角航天器动力学。已经针对捕获应用进行了研究,因为潜在的翻滚目标需要经过调整的机械手方法。通过 Giordano 等人 (2018) 提出的工作空间调整策略或 Giordano 等人 (2019) 同时控制全局质心和航天器姿态,已经研究了如何有效使用推进器来补偿机械手运动。同样,当仅控制机械手时,Pisculli 等人 (2015) 开发了反应零空间控制,以减少机械手和航天器底座之间的相互作用。还可以注意到没有考虑底座执行器的情况。更一般地说,轨迹规划被认为可以减少机械手运动和/或外部干扰对底座的影响,至少对于无奇点轨迹而言。Rybus 等人采用了非线性模型预测控制。 (2017) 确保机械手实现优化轨迹,最大限度地减少机械手对卫星的干扰,同样在捕获接近阶段,Lu 和 Yang (2020) 研究了笛卡尔轨迹规划,以最大限度地减少姿态干扰,Seddaoui 和 Saaj (2019) 提出了一种用于燃料消耗优化的无碰撞路径和无奇点路径的通用轨迹规划,同时采用 H ∞ 控制和前馈补偿处理内部和外部扰动。