参数 最小值典型值最大值 单位 工作频率 27 31 GHz 28V 小信号 小信号线性增益 18.5 20 dB 输入回波损耗 -35 -20 dB 输出回波损耗 -26 -16 dB 28V 晶圆上脉冲功率 Psat(27 dBm 时) 42 dBm 功率增益(27 dBm 时) 19.1 19.6 20.1 dB P1db 41.20 42 42.5 dBm PAE(27 dBm 时) 30.5 32.5 34 % 最大 PAE 31 32.9 33.8 % 24V、25⁰C 固定 CW 外壳温度 Psat(28 dBm 时) 38.1 39 39.6 dBm 功率增益(28 dBm 时) 15.3 16.9 17.8 dB PAE(28 dBm 时) 19.1 22 24.7 % 最大 PAE 24 28.4 % 漏极电压 28 V 第 1 阶段栅极电压 -3.925 V 第 2 阶段栅极电压 -3.925 V 第 1 阶段 Idq 240 mA 第 2 阶段 Idq 960 mA
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
在本文中,我们揭示了一种新结构,其中金属氧化物半导体场效应晶体管 (MOSFET) 与隧道场效应晶体管 (TFET) 并联以增加导通电流。为了提高器件中的隧道电流注入率,利用了栅极和衬底电极中的功函数工程以及通道 (源极袋) 中的掺杂工程。为了进一步增强器件的导通电流,通过在结构中结合 MOSFET 使用热离子注入机制。此外,使用异质栅极电介质来减少寄生电容。我们的分析表明,与 DW HGD SP TFET 相比,PTM-FET 晶体管在跨导、I on /I off 电流比、短通道效应(如 DIBL)、早期电压、最大传感器功率增益、单边功率增益、增益带宽积、单位增益频率和寄生电容方面具有多项优势。PTM-FET 晶体管的上述优势可以成为在低功耗和高性能集成电路应用中使用该器件的窗口。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc- nd/4.0/ ) 开放获取的文章。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
低温差:如果加热或冷却热交换器出现溢流,这并不等同于更高的加热或冷却输出。相反,这会导致供水和回水流之间的温差较小,因为水没有足够的时间释放其能量,从而不会产生实际功率增益。这会导致所谓的低温差。这会影响整个系统的效率,并导致泵和工厂的额外能源需求。真正的温差校正只能在消费者处完成,此功能由 Belimo Energy Valve™ 在激活后自动执行。这可确保系统在其现在延长的整个生命周期内高效运行。
使用标准线性响应关系,我们得出了对通用线性响应检测器的灵敏度的量子限制,以及通用线性放大器的噪声温度。特别强调检测器的有效温度和阻尼效应;前者的数量直接确定检测器的无效功率增益。与洞穴开创性工作中使用的方法不同[物理学。修订版d 26 1817(1982)],线性响应方法直接涉及检测器的噪声特性,并允许人们得出简单的必要条件,以达到量子极限。我们的结果与纳米机电系统的最新实验具有直接相关性,并补充了特定介绍位置检测器的最新理论研究。
摘要 — 我们提出了一种基于电荷准静态模型的显式小信号石墨烯场效应晶体管 (GFET) 参数提取程序。通过对 300 nm 器件进行高频(高达 18 GHz)晶圆上测量,精确验证了小信号参数对栅极电压和频率的依赖性。与其他只关注少数参数的工作不同,这些参数是同时研究的。首次将有效的程序应用于 GFET,以从 Y 参数中去除接触电阻和栅极电阻。使用这些方法可以得到提取小信号模型参数的简单方程,这对于射频电路设计非常有用。此外,我们首次展示了本征 GFET 非互易电容模型与栅极电压和频率的实验验证。还给出了测量的单位增益和最大振荡频率以及电流和功率增益与栅极电压依赖性的精确模型。
本文介绍了微带宽带微波放大器设计和分析所涉及的程序。用于系统设计,仿真,优化和分析,采用了计算机辅助设计(CAD)工具,即Angilent Advance Design System(ADS)。对放大器设备-FLC317MG-4 FET进行了测试,以稳定性测试,并观察到在2至6 GHz频带之间无条件稳定。研究了两个可能的理想匹配电路,以确定具有最大传感器功率增益的最佳匹配电路。观察到,具有平行开路存根的四分之一波变压器比其他匹配电路在频率范围更大(带宽/宽带更大的频率(带宽/宽带)的范围更高。因此,它是使用微丝线进行宽带放大器设计的,并以3.5至4.5 GHz的带宽实现了约9.8 dB至10.118 dB的最大扁平增益。