摘要 - 在这项研究中,提出了一个死时间控制电路,以生成半桥转换器开关的高和低边的独立延迟。除了大大减少电源转换器的损失外,该提出的方法还通过应用叠加功率开关来减轻射击电流。此处介绍的电路包括一个切换的电容器体系结构,并在AMS 0.35 µM技术学中实现。在实施中,提议的死时间控制电路占据了70 µm×180 µm的硅面积。为了意识到这一技术,采用了双面宽的挥杆电流源。当前源的每个侧面都有两个电容器,两个施密特触发器和三个变速门。结果表明,投影半桥转换器开关的低和高侧分别需要35 ns和62 ns。通过与半桥转换器组装来评估所提出的死时间电路的性能。拟议的死时间原型在半桥电路中的功率损失下降了40%。
近来,全球对通过微电网 (MG) 组织可再生能源 (RES) 运行的兴趣日益浓厚,这是解决技术、经济和环境困难的独特方法。本研究建议在混合微电网系统中实施发达的分布式资源管理策略 (DRMS),以降低总净百分比成本 (TNPC)、能量损失 (P loss) 和气体排放 (GEM),同时将成本效益指数 (CBI) 和电力供应损失概率 (LPSP) 作为运营约束。灰狼优化器 (GWO) 用于寻找混合微电网组件的最佳规模,并计算具有和不具有所提出的管理方法的多目标函数。此外,还对许多经济和技术参数进行了详细的敏感性分析,以评估系统性能。与正常运行相比,所提出的策略分别将系统的总净现值成本、功率损失和排放量降低了 (1.06%)、(8.69%) 和 (17.19%)。采用萤火虫算法(FA)和粒子群优化(PSO)技术验证结果。本研究从技术、经济和环境角度给出了评估混合微电网系统有效性的更详细计划。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损失使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
近年来,光伏(PV)模块的可靠性一直引起了PV行业的普遍关注。因此,这项工作报告了从包装到安装阶段的186个PV模块的可靠性和降解机制。本文表明,包装阶段之前没有影响PV模块的裂纹或热点,而在±0.3%处观察到的输出功率略有降低。使用标准实践交付了相同的PV模块,并且不考虑进一步的预防措施。在PV安装位点拍摄了所有PV模块的电致(EL)图像,发现2.2%的裂纹进化。取决于裂纹大小,标准测试条件下的估计输出功率损失从0.53%到1.43%不等。此外,安装六个月后,对PV模块进行了热检查。发现热点在所有破裂的PV模块中都发展起来,其温度从10°C升至20°C。此外,对破裂的PV模块进行了潜在的诱导降解(PID)测试,并与无裂纹模块进行了比较。发现PID比无裂纹模块对模块的影响更大。
摘要:本文提出了一个增强的能源管理系统(EEMS),用于住宅交流微电网。具有混合能量存储的基于可再生能源的AC微电网分为三个不同的部分:光伏(PV)阵列作为绿色能源,电池(BT)和超级电容器(SC)作为混合储能系统(HESS),以及公寓和电动汽车,并给出了该系统用于住宅区。开发的EEM确保了PV阵列生产的最佳使用,旨在减少电费,同时减少电池的快速功率变化,从而提高了系统的可靠性,因为电池的充电/放电循环较少。提出的EEMS是一种混合控制策略,该策略由两个阶段组成:状态机(SM)控制以确保电池的最佳操作,以及用于SC的最佳操作的操作模式(OM)。获得的结果表明,通过减少BT充电/放电周期的数量,EEM在快速载荷和PV生成变化过程中成功涉及SC,从而大大增加了系统的寿命。此外,通过降低源提取的功率和所需的等效物之间的功率误差,通过降低云阶段的功率损失降低。效率的提高达到9.5%。
摘要:分销网络中可再生能源资源(RER)的增加集成形成了网络可再生能源资源(NRERS)。合作对等(P2P)控制体系结构能够充分利用NRER的韧性和灵活性。本研究提出了一个多代理系统,以实现基于NRER的物联网(IoT)的P2P控制。控制系统已完全分布,并包含在每个RER代理中操作的两个控制层。对于主要控制,每个RER-ANTENT都采用下垂控制,以用于本地功率共享。对于二级控制,提出了分布式扩散算法以在RER之间进行任意幂共享。实施了建议的级别通信系统来解释分布网络系统和云服务器之间的数据交换。本地通信级别利用Internet协议(IP)/传输控制协议(TCP),消息排队遥测传输(MQTT)用作全球通信级别的协议。通过修改IEEE 9节点测试馈线的数值仿真来验证所提出系统的有效性。本文提出的控制器为该系统节省了20.65%的节省,光伏25.99%,柴油发电机的35.52节省为35.52,电池24.59,功率损失为52.34%。
拖曳船上和系泊观测表明,内部重力波越过帕劳北部热带西太平洋海域海面以下 1000 米的高大超临界海底山脊。背风波或地形弗劳德数 Nh 0 / U 0(其中 N 为浮力频率,h 0 为山脊高度,U 0 为远场速度)介于 25 和 140 之间。波浪是由潮汐和低频流叠加产生的,因此具有两个不同的能量源,组合振幅高达 0.2 ms 2 1 。波浪的局部破碎导致湍流动能耗散率增强,在靠近地形的山脊背风处达到 10 26 W kg 2 1 以上。湍流观测显示大潮和小潮条件形成鲜明对比。大潮期间,潮汐流占主导地位,湍流在海脊两侧分布大致相等。小潮期间,平均流占主导地位,相对于平均流,湍流主要出现在海脊下游一侧。海脊对水流施加的阻力估计为 O (10 4 ) N m 2 1(每次穿越海脊时),以及相关的功率损失,为低频海洋环流和潮汐流提供了能量吸收。
可再生生成和电力系统创新对智能的越来越多的集成使微网络成为平台,可以通过该平台将能量来源吞并,以进行有效的网络操作。但是,必须仔细选择来源以进行协同作用,以最大程度地减少间歇性挑战的生产力输出。本文提出了带网格连接的负载式杂交太阳能光伏和小型 - 高型微电网,并带有网格隔离电动汽车充电系统。分散的多代理智能电压网络反应性补偿通过节点的本地测量方法动态调节和监视网络限制。太阳系在峰值载荷需求期间支持水力发电,当照射处于最低阈值时,水电向太阳能存储充电。过量生产过程中的能量平衡是为单个电动汽车充电作为负载点的。将光伏的水力发电/电动汽车微电网分别与最大功率点跟踪和激发控制合并为控制手段。使用时间序列评估在每天24小时的模拟期内进行的详细性能分析是在标准IEEE 33和118-BUS径向分布网络上完成的。因此,在研究工作中确保了改进的电压调节,电动汽车充电的动态能源储备以及更好的功率损失。
1 Veena Vijayan 1来宾讲师,电气和电子工程的1台,1 NSS理工学院,潘达拉姆,喀拉拉邦,喀拉拉邦,印度摘要:随着半导体技术的进步,随着半导体技术的进步,对电子设备有效的电力消耗的需求不断提高,尤其是电子设备,尤其是移动装备,已成为最重要的。在追求低功率电路时,本研究探讨了各种技术,包括拟议的预先泄漏方法,以减轻功率损失,强调泄漏功率的关键问题,这可以占总体电力消耗的50%。该研究检查了由于VLSI电路中泄漏引起的功率耗散。列出了对泄漏减少方法的全面分析,例如堆栈技术,Lector技术,源偏置方法,堆栈Onofic方法和建议的方法。该研究采用CMOS逆变器模型,揭示了泄漏功率的显着降低50%,证明了该方法的功效。列出了和讨论的结果,包括各种电路和技术的功耗和传播时间,为将来的低功率VLSI电路设计提供了宝贵的见解。索引项 - 功率降低,VLSI,泄漏,CMO,泄漏电流,晶体管。
用于治疗的现代医疗设备和Di-Nostics越来越复杂。作为设备引起的功能,由于突然的功率损失而造成的损坏的可能性也会增加。例如,能够同时成像患者的所有组织和器官超过1000万美元[1-4]的大多数最新全身发射(PET)系统的成本[1-4]。这样的高级多探测器系统,包括数千个独立传感器,都需要精确的校准和同步,即使突然的电源故障没有损害系统,也需要进行新的校准和同步程序。为了防止患者无法接受所需的治疗或诊断的情况,使用未中断的电源(UPS)和应急发电机。当前用过的UPS基于铅酸电池[5]。尽管这种电池的电化学特性非常适合此应用,但高重量和体积在准备合适的耗能存储安装方面引起了困难[5]。由于重量[6],扩展储能的能力是有限的,这也限制了添加新的或升级现有受保护的医疗设备的可能性,因此,由于任何此类更改都会减少备份时间,要么迫使设备在不使用保护的情况下运行。锂离子电池的特性表明,它们是用于医疗设备储能的合适替代品。他们的轻巧,能量降解[7]和流动性也证明了其受欢迎程度