自由活塞斯特林制冷机在空间技术中的应用越来越广泛,特别是用于冷却卫星和其他空间相关设备上的红外传感器。本研究重点是使用 SAGE 12 软件设计和优化一体式自由活塞斯特林制冷机。该设计采用电磁驱动谐振机构和间隙密封装置,以确保最佳效率、COP 和最小系统振动。设计的一体式自由活塞斯特林制冷机在 80 K 时可产生 1.58 W 的制冷效果,COP 为 0.0424。对设计的制冷机进行了全面评估,以评估不同设计特性和操作参数的影响。随后,使用 Ansys Maxwell 软件设计了制冷机所需的动磁式线性电机。在研究的最后阶段,原始制冷机设计进行了修改,将单网格再生器替换为多网格再生器。确定了多网格再生器的最佳组合,以提高系统性能。分析表明,在具有多网格再生器的整体式低温冷却器中,当较粗的网格位于再生器管的热侧而较细的网格位于再生器管的冷侧时,系统性能会得到改善。
摘要 目的。检测神经信号的方法涉及侵入性、时空分辨率和记录的神经元或脑区数量之间的折衷。基于电极的探针提供了出色的响应,但通常需要经颅布线并捕获有限神经元群的活动。脑电图和脑磁图等非侵入性方法分别提供场电位或生物磁信号的快速读数,但具有空间限制,禁止从单个神经元进行记录。增强神经源性磁场的细胞大小的装置可用作基于磁的模式的原位传感器,并提高检测跨多个脑区不同信号的能力。方法。我们设计并建模了一种能够与单个神经元形成紧密电磁连接的装置,从而通过驱动电流通过纳米制造的电感元件将细胞电位的变化转化为磁场扰动。主要结果。我们使用从体外膜片钳神经元获取的信号和几何形状进行真实的有限元模拟,对设备性能进行了详细的量化,并展示了该设备产生可通过现有模式读取的磁信号的能力。我们将设备的磁输出与内在神经元磁场 (NMF) 进行了比较,并表明单个神经元的传导磁场强度在峰值时高出三倍多(1.62 nT vs 0.51 nT)。重要的是,我们报告了典型体素 (40 × 40 × 10 µ m) 内传导磁场输出的空间增强,比内在 NMF 强度高出 250 倍以上(0.64 nT vs 2.5 pT)。我们使用此框架根据纳米制造约束和材料选择对设备性能进行优化。意义。我们的量化为合成和应用用于检测大脑活动的电磁传感器奠定了基础,可以作为在单细胞水平上量化记录设备的通用方法。
bitsavers.org › pdf › dec › brochures PDF 2019年6月13日 — 2019年6月13日 大容量存储控制协议。(MSCP) 支持意味着 RC25 与其他数字存储兼容。架构磁盘。卓越的可靠性和数据...