光接收器的作用是检测入射到其上的接收光,并将其转换为包含传输端光上信息的电信号。然后,信息就可以输入到电子设备中,例如计算机、导航控制系统、视频监视器等。 电缆结构 光纤电缆的结构通常由五个元素组成:光芯、光包层、缓冲层、强度构件和护套。光芯是光纤中心的光承载元件。它通常由高纯度二氧化硅和氧化锗的组合制成。芯周围是纯二氧化硅制成的光包层。这些材料的组合使全内反射原理成为可能,因为材料的差异在界面点处产生了反射面。进入光纤芯的光脉冲从芯和包层之间的界面反射,沿线移动时留在芯内。包层周围是缓冲材料,充当减震器,以保护芯和包层免受损坏。缓冲层周围包裹着强度构件(通常是芳纶),增加了临界抗拉强度,以防止安装过程中因拉力而造成损坏。外护套可防止磨损和环境损害。所用护套的类型还决定了电缆的用途和可燃性等级。
人们对用于制造和修复薄壁结构的定向能量沉积工艺的兴趣日益浓厚,这促使人们更深入地了解该方法的基本构造块的特性:覆层形成。在本研究中,研究了通过沉积 316L 不锈钢 (SS316L) 粉末获得的覆层,其中三个不同的工艺参数是激光功率、激光移动速度和粉末质量流速。通过每个参数的宽样本范围来确保可重复性。从数据测量来看,覆层的平均硬度接近 SS316L 材料的典型 200 Hv,表明 Hall-Petch 效应占主导地位。研究还表明:(i) 激光功率是影响覆层深度的最重要因素,但对覆层厚度影响不大。(ii) 激光移动速度是影响覆层高度的主要参数。 (iii) 粉末质量流速往往会通过厚度增加来补偿深度减少,因此对包层高度没有明显影响。观察到增加激光功率是防止在零稀释下形成包层的最有效方法,零稀释是衡量打印包层与基材结合程度的指标。从 SS316L 包层组得出了无量纲分析。通过使用不同的不锈钢数据集进行验证并推断到更大的参数范围,证明该分析能够促进工艺参数的选择,以满足对包层尺寸的给定要求。由于其应用直观,该分析有可能被用作标准的预打印工具,以提高成功率,从而改善制造周转时间。
在过去十年中,金属增材制造 (MAM) 经历了重大发展并引起了广泛关注,因为它能够制造复杂零件、使用功能梯度材料制造产品、最大限度地减少浪费并实现低成本定制。尽管具有这些优势,但由于 MAM 工艺的复杂性,预测工艺参数对 MAM 打印覆层特性的影响仍然具有挑战性。机器学习 (ML) 技术有助于将工艺和工艺参数背后的物理特性与覆层特性联系起来。在本研究中,我们介绍了一种混合方法,该方法利用经过校准的多物理计算流体动力学 (CFD) 模型和实验研究提供的数据来准备必要的大数据集,然后使用由各种 ML 模型组成的综合框架来预测和理解覆层特性。我们首先通过将实验数据融合到使用为本研究开发的 CFD 模型生成的数据中来编译一个大量数据集。该数据集包含关键的包层特性,包括宽度、高度和深度等几何特征、标识包层质量的标签以及加工参数。其次,我们使用两组加工参数来训练 ML 模型:机器设置参数和物理感知参数,以及多功能 ML 模型和可靠的评估指标,以创建一个全面且可扩展的学习框架来预测包层几何形状
电火花沉积 (ESD) 技术已用于在 9Cr 还原活化钢上涂覆铁铝化物涂层,该钢是用于聚变反应堆测试包层模块的结构材料。在 X 射线衍射技术、光学显微镜、扫描电子显微镜和纳米压痕硬度测量的支持下,对铝化物涂层以及界面区域进行了相位识别和微观结构分析。微观结构检查表明,通过 ESD 工艺处理的钢的近界面微观结构发生了显著变化。涂层/基材界面的基材侧由可能具有准非晶性质的软区和该界面下方的 M 23 C 6 型碳化物偏析富集区组成。然而,涂层显示出广泛的裂纹缺陷,需要将其去除才能可靠地评估其作为包层应用的阻挡层的适用性。
使用以下标签标记心脏的层:心心腔纤维纤维心包膜心包层的浆膜心包层止痛心包(心胸)心肌心肌心脏心脏心脏心脏来源层,与其功能相关的每个层的结构都重要的是什么?
郡图书馆建设项目 克莱尔郡图书馆和美术馆新大楼的最后建设工作仍在继续进行中。外墙保温和粉刷工作即将完成,二楼的外部包层也已完工。主入口门廊钢结构的包层工作即将完成。机械和电气承包商即将完成两个行业的第二次修复工作。所有设备都已安装到机房。通讯室正在与 CCC IT 服务部门协调安装。天花板和内墙隔断已经完成。踢脚板和门框的安装也即将完成。卫生洁具将很快安装完毕。ESB、Eir 网络和水连接的管道系统已经完工。公共照明管道系统即将完工,沿着 Causeway Link 的外部地面正在铺设中。这座最先进的新建筑将为研究、学习、娱乐和艺术提供重要的资源,位于恩尼斯镇的中心位置,毗邻著名的 glór 剧院。
在法国核研究所的框架下,CEA 与 AREVA 和 EDF 合作开发了铬涂层,旨在保护当前的锆合金核燃料包层材料免受高温蒸汽氧化(尤其是在意外条件下)的影响。本文重点介绍了锆合金-4 和基材上的铬涂层包层的最新研究结果。AREVA 发表了一篇补充论文 [1]。图中显示了铬涂层的典型制造微观结构。在 415°C(蒸汽,100 巴)下对未涂层参考材料和铬涂层锆合金-4 基样品进行了初步高压釜氧化试验,结果显示上一代 Cr 涂层的制备结果非常令人鼓舞。此外,还介绍了在蒸汽中高温 (HT) 氧化后获得的结果。结果表明,与传统的未涂层材料相比,迄今为止开发的铬涂层可以显著改善高温氧化后的包层机械性能(即延展性和强度)。因此,开发的铬涂层为冷却剂缺失事故(LOCA)提供了显著的额外裕度,并且在一定程度上为超越 LOCA 的条件提供了显著的额外裕度。
使用不同靶到基片距离的化学计量氮化硅靶,通过射频磁控溅射在单面 P 型抛光掺硼硅晶片基片上沉积氮化硅薄膜。改变靶到基片的间距(非常规参数)以优化表面粗糙度和晶粒尺寸。这种优化提供了均匀、密集的氮化硅薄膜的正态分布,没有表面裂纹。采用原子力显微镜探索氮化硅薄膜的精确表面粗糙度参数。所有样品的表面粗糙度和晶粒分析都表现出直接关系,并与靶到基片的间距呈反比关系。通过以下参数分析了 Si3N4 的表面形貌:平均粗糙度、均方根粗糙度、最大峰谷高度、十点平均粗糙度、线的偏度和峰度。氮化硅薄膜的表面粗糙度在基于氮化硅波导的生物传感器制造中具有重要意义。 (2022 年 8 月 4 日收到;2023 年 4 月 3 日接受) 关键词:原子力显微镜、射频磁控溅射、氮化硅、靶材到基板间距、薄膜 1. 简介 氮化硅具有卓越的光学、化学和机械性能,是微电子学中用作电介质和钝化层 [1] 以及微机电系统 (MEMS) 中结构材料最广泛的材料 [2, 3]。氮化硅薄膜由于其在可见光和近红外 (NIR) 区域的高折射率和透明度,在光电子应用中也发挥着至关重要的作用 [4, 5]。氮化硅薄膜在光电子领域的主要应用是基于光波导的生物传感器作为平面光波导 [6-8]。平面光波导是一种三层结构,其中通常称为芯的高折射率薄膜夹在两个低折射率膜(称为下包层和上包层)之间。平面波导内部的光传播基于全内反射原理。据报道,光波导中芯体表面的粗糙度是造成波导边界处光传播损耗的原因 [10, 11]。这是由于界面处的反射和折射现象而不是全内反射造成的。芯体的粗糙表面可以将光散射到不同方向。芯体和包层之间的折射率差 ∆n 越大,光在芯体中的限制就越大。因此,由于氮化硅的折射率约为 2,而二氧化硅的折射率约为 1,因此二氧化硅/氮化硅/二氧化硅的特定结构是平面光波导的合适候选材料。46 作为上下包层,折射率差 ∆n ~ 0.5[9]。Si 3 N 4 薄膜通过低压化学气相沉积、热蒸发、等离子体增强化学气相沉积和磁控溅射系统制备[12-16]。然而,磁控溅射技术由于无毒气体、低温沉积、易于调节沉积速率和沉积系统简单而比 PECVD 技术具有相当大的优势[17]。薄膜的常规参数