1-印第安纳波利斯普渡大学印第安纳大学普渡大学工程与技术学院机械与能源工程和综合纳米系统发展研究所,印第安纳波利斯普渡大学,印第安纳波利斯,美国46202,美国2-纳米相物材料科学中心 - 橡树岭国家实验室,Oak Ridge,Oak Ridge,TN 37831,美国37831,Lemt septor,lem tn 37831,lem tn 37831 60439,美国4 -lukasiewicz研究网络 - 波兰波兰华沙的微电子和光子学研究所 - 计算科学与工程部,橡树岭国家实验室,橡树岭,田纳西州橡树岭,37831,美国6-美国6-美国材料工程学院,西拉法伊大学,西拉法伊特大学,机构,美国479907.99090799999090909090909.99090990909909090.990990990.990990990.990990990990990.990999999090.9909999099090.990型,拉斐特(Lafayette),美国47907 * - 通讯作者banasori@purdue.edu摘要过渡金属碳化物已在储能,转换和极端环境应用中采用。在其2D对应物中的进步(称为MXENES)可以在〜1 nm厚度尺度上设计独特的结构。碱阳离子在MXENES制造,存储和应用中至关重要,但是,这些阳离子与MXENES的精确相互作用尚不完全了解。在这项研究中,使用Ti 3 C 2 t X,Mo 2 TIC 2 T X和Mo 2 Ti 2 C 3 T X MXenes,我们介绍了如何通过碱阳离子占用过渡金属空位位点,以及它们对MXENE结构稳定的影响以控制Mxene的相变。在MXENES中,这代表了其2D基底平面的阳离子相互作用的基本面,用于MXENES稳定和应用。我们使用原位高温X射线衍射和扫描透射电子显微镜,原位技术(例如原子层分辨率二次离子质谱法)和密度功能理论模拟进行了检查。广义,这项研究证明了在原子量表上陶瓷理想相关关系的潜在新工具。引言过渡金属碳化物已用于氧化物缺乏潜力的独特应用中,例如其高熔点(例如,HFC的〜4,000°C),1,2导热率(例如WC的63 W·M -1·K -1),3和机械行为(弹性模量)(弹性模型最高为549 GPA)。4在当前的研究中,碳空缺5,快速加热,6或高贵的金属装饰7提供了修改过渡金属碳化物系统固有物质行为的工具。8-17尽管某些方法(例如闪光灯或长期烧结在低(〜750°C)的温度为理想性能提供了一定的相位控制,但有6,12仍有机会准确地控制过渡金属碳化物阶段,以实现理想相位关系的阶段。18在2011年引入MXENES,将过渡金属碳化物推向了2D领域,19已增加了一个多种多样,可调节的家族,包括少量原子(〜1 nm厚)(〜1 nm-thick)和溶液处理的过渡金属碳化物,并将其添加到材料科学上。20,21 mxenes的化学多样性通过其广泛的化学式M n +1 x n t x显而易见,其中m代表一个或多个3 d -5 d和3-6组的n +1层,x代表N层的碳和/或氮气和/或氮气的n层
注释 [1] 标准化学式代表理想燃料。某些表值以范围表示,以代表现场遇到的典型燃料变化。 [2] GGE 表值反映了常见汽油基线参考(E0、E10 和吲哚认证燃料)的 Btu 范围。 [3] 必须考虑用于给车辆加油的仪表或分配设备的类型。对于使用科里奥利流量计分配 CNG 的快速加气站,这些流量计测量燃料质量并根据 GGE 报告分配的燃料,应使用磅/GGE 因子。对于按时加气站或使用以立方英尺为单位测量/记录的传统住宅和商业燃气表的其他应用,应使用 CF/GGE 因子。 [4] 请参阅压缩天然气汽油和柴油加仑当量方法,网址为 http://afdc.energy.gov/fuels/equivalency_methodology.html。 [5] E85 是一种高浓度汽油-乙醇混合物,乙醇含量为 51% 至 83%,具体比例取决于地理位置和季节。在寒冷气候下,冬季的乙醇含量较低,以确保车辆能够启动。根据成分,E85 的低热值从 83,950 到 95,450 Btu/加仑不等。[6] 锂离子电池密度为 400 Wh/l,摘自 Linden 和 Reddy 的《电池手册》,第 3 版,麦格劳-希尔出版社,纽约,2002 年。[7] 用于运输时,锂离子能量密度增加了 3.4 倍,以解释电动汽车传动系统相对于内燃机的效率提高。资料来源 (a) NIST 手册 44 – 质量流量计附录 E https://www.nist.gov/file/323701 (b) 第 78 届全国度量衡大会报告,1993 年,NIST 特别出版物 854,第 322-326 页。https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication854.pdf (c) 交通运输中的温室气体、管制排放和能源使用 (GREET) 模型。2023 年。输入燃料规格。阿贡国家实验室。伊利诺伊州芝加哥。 https://greet.es.anl.gov/ (d) R. McCormick 和 K. Moriarty,《生物柴油处理和使用指南 - 第六版》,美国国家可再生能源实验室 (NREL),2023 年。https://afdc.energy.gov/files/u/publication/biodiesel_handling_use_guide.pdf (e) 美国石油协会 (API),《醇和醚》,出版物编号 4261,第 3 版。(华盛顿特区,2001 年 6 月),表 2。 (f) 《石油产品调查:车用汽油》,1986 年夏季,1986/1987 年冬季。国家石油和能源研究所。 (g) 美国石油协会 (API),《醇和醚》,出版物编号 4261,第 3 版。(华盛顿特区,2001 年 6 月),表 B-1。 (h) K. Owen 和 T. Coley。1995 年。《汽车燃料参考书:第二版》。美国汽车工程师协会。宾夕法尼亚州沃伦代尔。https://www.osti.gov/biblio/160564-automotive-fuels-reference- book-second-edition (i) J. Heywood。1988 年。《内燃机基础知识》。麦格劳-希尔公司。纽约。(j) 甲醇研究所。纯甲醇的物理性质。访问于 2024 年 3 月 14 日,网址为 https://www.methanol.org/wp-content/uploads/2016/06/Physical-Properties-of-Pure-Methanol.pdf (k) Foss, Michelle。2012 年。液化天然气安全与保障。经济地质局、杰克逊地球科学学院。德克萨斯大学奥斯汀分校。 (l) 能源信息管理局。“能源使用解释:运输能源使用。” https://www.eia.gov/energyexplained/use-of-energy/transportation.php (m) J. Sheehan、V. Camobreco、J. Duffield、M. Graboski 和 H. Shapouri。1998 年。生物柴油和石油柴油生命周期概述。NREL 和美国能源部 (DOE)。NREL/TP-580-24772。 https://www.nrel.gov/docs/legosti/fy98/24772.pdf (n) M. Wang。2005 年。燃料乙醇对能源和温室气体排放的影响。向 NGCA 可再生燃料论坛发表的演讲。阿贡国家实验室。伊利诺伊州芝加哥。https://www.researchgate.net/publication/228787542_Energy_and_greenhouse_gas_emissions_impacts_of_fuel_ethanol