在原子尺度上设计和表征量子多体系统对于理解强关联物理和量子信息处理至关重要。最近,将电子自旋共振 (ESR) 与扫描隧道显微镜 (STM) 相结合,可以高精度地探索表面上相互作用的自旋 [1]。ESR-STM 的亚埃空间分辨率和超高能量分辨率使我们能够测量单个原子之间的磁相互作用、检测单个核自旋以及探索工程自旋阵列中的量子涨落。在本次演讲中,我将介绍我们最近使用 ESR-STM 从绝缘膜上的原子自旋构建拓扑量子磁体的努力 [2]。这些拓扑量子磁体包括自旋 1/2 链和二维自旋 1/2 阵列。我们设计了量子自旋模型的拓扑相和平凡相,从而实现了一阶和二阶拓扑量子磁体。它们的多体激发由能量分辨率优于 100 neV 的单原子 ESR 探测。我们进一步可视化了各种多体拓扑束缚模式,包括拓扑边缘态和高阶角模式。这些结果为模拟相互作用自旋的量子多体相提供了一种重要的自下而上的方法来模拟。[1] K. Yang 等人。Nat. Commun. 12, 993 (2021) [2] H. Wang 等人。Nat. Nanotechnol. (2024) https://doi.org/10.1038/s41565-024-01775-2
校正(QEC),横向和非转交逻辑门及其对普遍性的影响。然后,我将重点介绍Rydberg Atom阵列作为FTQC平台的特定优势和机会,并展示其独特功能(例如非本地连接性,平行的闸门动作,集体活动性,集体移动性以及本地多控制的Gates)如何使用诸如魔术和良好的魔术集合,以实现魔术,并在魔术中实现魔术,以实现魔术,并使用魔术。受控-z代码(https://arxiv.org/abs/2312.09111)。
探索奇异的电子订单及其潜在的驱动力仍然是量子材料领域的中心追求。在这种情况下,Kagome Lattice是一个转角共享的三角网络,已成为探索非常规相关和拓扑量子状态的多功能平台。Due to the unique correlation effects and frustrated lattice geometry inherent to kagome lattices, several families of kagome metals have been found to display a variety of exotic electronic instabilities and nontrivial topologies, including unconventional superconductivity, charge density wave orders, and electronic nematicity, reminiscent of the complex competing orders observed in high-temperature superconductors.在此背景下,Kagome Systems提供了一个出色的量子操场,可深入研究非常规电子不稳定性的起源。在这次演讲中,我将介绍我们最近的工作,重点介绍了两个著名的kagome超导体:V 3 SB 5(a = k,rb,cs)中的非常规CDW,以及在Ti 3 Bi 5中观察到的电子nematicities。尤其是从源自角度分辨光发射光谱(ARPES)的见解中绘制的,我将突出这些系统的独特特征,阐明它们有趣的电子行为并阐明其潜在机制。
量子厅效应的发现已确立了拓扑凝结物理学领域的基础。对现在在量子计量学中所采用的霍尔电导的精确量化,由于其拓扑保护而在任何合理的扰动中都是稳定的。相反,后者暗示了一种审查形式,通过向观察者隐瞒任何当地信息。量子厅系统中电流的空间分布就是这样的信息,由于最近的进步,该信息现在已成为实验探针的访问。是一个古老的问题,是否原始的和直观地引人注目的电流理论图片沿着样品边缘流动在狭窄的通道中,是物理上正确的。是由最近在Chern绝缘子中量化电流的局部成像的动机[Rosen等,Phys。修订版Lett。 129,246602(2022); Ferguson等,Nat。 mater。 22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。 此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。 这说明了在实验中观察到的各种特征和不同的特征。 参考:PNAS,121号 39 E2410703121(2024)Lett。129,246602(2022); Ferguson等,Nat。mater。22,1100-1105(2023)],从理论上讲,我们证明了一个宽阔的“边缘状态”的可能性,通常从样品边界深入到大块的样品边界上。此外,我们表明,通过改变实验参数,人们可以在边缘状态狭窄和蜿蜒通道之间连续调整,一直到主要发生的电荷运输。这说明了在实验中观察到的各种特征和不同的特征。参考:PNAS,121号39 E2410703121(2024)总的来说,我们的发现强调了拓扑凝结物理学的鲁棒性,但也揭示了现象学的丰富性,直到最近被拓扑审查制度隐藏了,我们认为其中大多数仍然有待发现。
在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。
量子力学的很大一部分效力在热平衡中被掩盖。不同的领域依赖于创建远离平衡的量子相,例如量子化粒子和多体系统,它们应用于量子信息处理和存储。超快太赫兹频率 (THz) 激光脉冲具有实现由集体量子效应决定的非平衡相的诱人能力,因为它们的时间尺度与电子、自旋、晶格离子等的纳米级动力学相称。在本次演讲中,我将展示太赫兹频率脉冲可以控制单个量子点中的通用光致发光闪烁 [1,2],尽管经过了二十年的研究,但这仍然是一个持续的挑战。然后,我将介绍一种用于选择性相位控制的新型非共振激发方法,以 LiNbO 3 中的铁电反转和 SnSe 和 MoTe 2 中的多态跃迁为例,它们与非平凡的能带拓扑交织在一起 [3,4]。最后,我将说明如何利用对太赫兹与物质相互作用的基本理解来设计用于偏振敏感太赫兹成像的纳米光子装置 [5]。[1] Shi, J. 等人。Nat. Nanotechnol. 16, 1355 (2021)。[2] Shi, J. 等人。Nano. Lett. 22, 1718 (2022)。[3] Shi, J. 等人。Nat. Commun.,即将出版。arXiv : 1910.13609 (2023)。[4] Shi, J. 等人。Nat. Phys.,正在审查中。[5] Shi, J. 等人。Nat. Nanotechnol. 17, 1288 (2022)。
过去一百年中,北大植物学科在对中国植物科学从无到有的发展作出了巨大贡献,其中 最为重要的是为国内植物学科发展培养了众多优秀人才。除了常规的教学活动之外,汤佩松 在主持植物生理教研室工作期间,于 1956 年组织了全国植物生理教学研讨会,为国内的植 物生理学教学培养了急需的师资。张景钺的教研室也不断招收全国各地的进修生,其中出类 拔萃者就包括胡适宜。李继侗在 1952 年因院系调整调入北大后,在北大创办了我国第一个 植物生态学和地植物学专门组,为国内培养了第一批植物生态学人才。 1959 年后,北大理 科教学曾改为 6 年制,在加强本科生基础课程教学的同时,尤其注重实验课程的设置与学术 实验技能的培养。植物学教研室的汪劲武不仅为北大植物标本馆的维护与建设做出了长期的 努力,而且和动物学领域的老师共同打造了广受欢迎的野外实习课程,为学生获取野生动植 物的第一手知识、培养对生物的兴趣奠定了坚实基础。改革开放之后,邓兴旺等人组织海外 杰出学者,在北大暑假期间开设免费的植物分子生物学与发育遗传学讲习班,为全国有志于 植物科学研究的青年学子提供了一个了解国际前沿、学习相关植物分子生物学技术的重要窗 口。
12 临床意义目前已知在感染慢性B 型肝炎过程中, HBV 病毒数量会产生改变, 且其病毒量与B 肝的感染力及治疗后的预后(prognosis) 是有相关性的。依据研究指出,血清中HBV 核心关连抗原(Hepatitis B core-related antigen, HBcrAg) 检测可用來作为HBV 感染的标记,且不易受抗病毒药物及免疫复合体的影响。 HBcrAg 则有HBeAg 、 HBcAg(HBV 核心抗原) 及具有分子量22Kd 的p22cr 之称的HBV 前核心蛋白三种。 HBeAg 、 HBcAg 与p22cr 核心蛋白即使在使用抗病毒药物( 如Lamivudine 、 Entecavir) 抑制HBV DNA 合成时,仍能检测肝内残存病毒,协助判断治疗效果及停药时机,并可为慢性肝炎病程提供讯息。
Adrian M. Owen OBE 博士目前是加拿大西安大略大学生理学与药理学系和心理学系的认知神经科学与成像教授。他还指导由加拿大高级研究院 (CIFAR) 资助的大脑、思维和意识项目,并且是加拿大西安大略大学 CFREF 资助的 BrainsCAN 计划的执行委员会成员。Owen 博士曾担任剑桥大学医学研究委员会认知与脑科学部的助理主任和西安大略大学认知神经科学与成像领域的加拿大卓越研究主席 (CERC)。他的研究将结构和功能神经成像与脑损伤患者的神经心理学研究相结合,并已在许多世界领先的科学期刊上发表,包括《科学》、《自然》、《新英格兰医学杂志》和《柳叶刀》。Owen 博士担任过多个编辑职务,其中包括担任《欧洲神经科学杂志》副主编 9 年。他发表了 400 多篇同行评审文章和章节,以及一本畅销科普书《走进灰色地带:神经科学家探索生死边界》。欧文博士因在科学研究方面的贡献,于 2019 年荣获女王荣誉榜上的大英帝国官佐勋章 (OBE)。他于 2022 年被任命为加拿大皇家学会院士,并于 2023 年被任命为加拿大卫生科学院院士。