如果 EMS JSC Belgrade 失去 AIB 正式会员资格,则将在 EMS JSC Belgrade 恢复正式会员资格之前,为塞尔维亚境内可再生能源电力的生产期签发国家 GO。会员资格批准后,将在 AIB 会员资格批准后为塞尔维亚境内可再生能源电力的生产期签发 EECS-GO。由于生产期签发时间表,可能会同时处理 EECS-GO 和国家 GO,但这些生产期不会重叠,因此不会签发重复的 GO。
摘要 - 电解图(EEG)的间/受主体内变异性使脑计算机界面(BCI)的实际使用很难。通常,BCI系统需要一个校准程序来获取主题/会话特定数据,以每次使用系统时调整模型。这个问题被认为是BCI的主要障碍,并克服它,基于域概括(DG)的方法最近出现了。本文的主要目的是重新考虑如何从DG任务的角度克服BCI的零校准问题。就现实情况而言,我们专注于创建一个脑电图分类框架,该框架可以直接在看不见的会话中应用,仅使用先前获得的多主题/ - 主题/ - 主题。因此,在本文中,我们通过休假一项验证测试了四个深度学习模型和四种DG算法。我们的实验表明,更深层次的模型在跨课程的概括性能中有效。此外,我们发现任何明确的DG算法都不优于经验风险最小化。最后,通过使用特定于特定数据进行调查的结果进行比较,我们发现特定于特定的数据可能会由于会议变异性而导致的,从而使未见的会话分类性能恶化。关键字 - 大脑 - 计算机接口;深度学习;电气图;运动图像;域概括
先进的高维测定技术,例如转录组学和表观基因组学32分析,在分子级生物学研究中提供了显着的深度和广度1。尽管有33项优势,这些技术通常只专注于特定的分子变化,34缺乏在细胞状态下观察变化的能力,涉及许多35个复杂和未知过程。为了在细胞系统水平上获取信息,已经开发出高36个吞吐量成像技术,以通过对染色的细胞成像2-4来产生细胞37表型的有用曲线。但是,这些基于图像的技术也有38个局限性,因为它们通常集中在具有已知关联或39个假设的生物过程上,从而限制了现有知识5中的发现5。此外,包括高维测定和基于图像的技术在内的传统40种方法通常受到其复杂性和高成本的约束。为了克服这些问题,已提出该技术称为细胞绘画(CP),已被提议作为解决方案。具体而言,CP技术43涉及染色八个细胞成分,具有六种非常便宜且易于染料的六个细胞成分,并在荧光显微镜6上五个通道中成像,这很易于操作,45
人类表皮生长因子受体2(HER2)状态用于乳腺癌治疗中的决策。该状态是通过免疫组织化学或原位杂交获得的。这两种方法的缺点是需要组织采样,这很容易因肿瘤异质性或观察者间的变异性而导致误差。全身成像可能是在整个身体中绘制HER2表达的解决方案。方法:该II期试验中包括20例患有局部晚期或转移性乳腺癌(5例HER2阳性和15例HER2阴性患者)的患者,以评估摄取量定量的重复性以及[68 GA] GA-NOTA-GA-NOTA-ANTA-ANTI-ANTI-HER2单域抗体(SDAB)的扩展安全性。注入示踪剂,然后在90分钟处进行PET/CT扫描。在8 d之内,重复该过程。血液样品用于抗氮抗体(ADA)评估和液体活检。进行了可用的组织,免疫组织化学,原位杂交和质谱法,以确定HER2状态与PET上测得的摄取值的相关性。如果可以使用相关的先前存在[18 F] FDG PET/CT图像(作为护理标准进行),则进行了比较。结果:以21.8%的可重复性系数,该成像技术是可重复的。由于HER2表达较低的患者也显示出中度至高摄取,因此可以建立PET/CT摄取值和病理学之间的明确关系。在某些患者中,[68 Ga] ga-nota-anti-her2-SDAB的疾病程度更明显。没有开发新的ADA。与[18 f] FDG PET/CT进行比较16例患者表明,在7例患者中,[68 Ga] Ga-nota-anti- HER2在同一患者中显示出内间异质性,[18 F] FDG摄取并未显示所有患者的异质性摄取。报告了16个不良事件,但与示踪剂没有明确的关系。三名先前存在的ADA患者没有显示不良反应。结论:[68 GA] Ga-Nota-Anti-her2-SDAB PET/CT成像显示与[18 F] FDG相似的可重复性。安全
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具