中高能粒子传感器、单粒子翻转传感器、地磁场监测仪(FGM)、卫星表面带电电位监测仪、空间辐射环境监测仪、全球导航掩星探测器(GNOS)、电离层光度计(IPM)、广角极光成像仪(WAI)、太阳X-EUV成像仪
摘要:片上系统 (SoC) 的复杂性不断增加,集成电路 (IC) 制造工艺的微型化技术不断发展,使得现代 SoC 更容易受到辐射引起的单粒子效应 (SEE) 的影响,即使在海平面也是如此。为了以低成本提供切合实际的估计,需要能够复制 SEE 的高效分析技术。在这些方法中,通过使用现场可编程门阵列 (FPGA) 进行仿真进行故障注入,可以在被测电路 (CUT) 上运行活动。本文研究了使用 FPGA 架构来加速故障活动的执行。因此,提出了一种在 FPGA 上映射 CUT 占用的新方法,从而显著减少了要注入的故障总数。此外,还提出了一种故障注入技术/流程来展示尖端方法的优势。所提出的技术使用 Xilinx FPGA 的内部配置访问端口 (ICAP) 模拟 CUT 的所有组合元素中的单粒子瞬变 (SET)。
• 目标:使用连续损伤模型 (CDM) 来告知单粒子模型 (SPM) 中的参数。• 方法:使用给定 CDM 模拟的电压曲线,优化设计变量以最小化 SPM 电压曲线中的差异。• 设计变量:扩散、半径、交换电流密度、过电位
宽带隙半导体 SiC 和 GaN 已经作为功率器件商业化,用于汽车、无线和工业电源市场,但它们在太空和航空电子应用中的应用受到重离子暴露后易发生永久性性能退化和灾难性故障的阻碍。这些宽带隙功率器件的太空认证工作表明,它们易受无法屏蔽的高能重离子空间辐射环境(银河宇宙射线)的损坏。在太空模拟条件下,GaN 和 SiC 晶体管在其额定电压的约 50% 下表现出故障敏感性。同样,在重离子单粒子效应测试条件下,SiC 晶体管容易受到辐射损伤引起的性能退化或故障,从而降低了它们在太空银河宇宙射线环境中的实用性。在 SiC 基肖特基二极管中,在额定工作电压的 ∼ 40% 时观察到灾难性的单粒子烧毁 (SEB) 和其他单粒子效应 (SEE),并且在额定工作电压的 ∼ 20% 时漏电流出现不可接受的下降。超宽带隙半导体 Ga 2 O 3 、金刚石和 BN 也因其在电力电子和日盲紫外探测器中的高功率和高工作温度能力而受到探索。从平均键强度来看,Ga 2 O 3 似乎比 GaN 和 SiC 更能抵抗位移损伤。金刚石是一种高度抗辐射的材料,被认为是辐射探测的理想材料,特别是在高能物理应用中。金刚石对辐射暴露的响应在很大程度上取决于生长的性质(自然生长与化学气相沉积),但总体而言,金刚石对高达几 MGy 的光子和电子、高达 10 15(中子和高能质子)cm − 2 和 > 10 15 介子cm − 2 的辐射具有抗辐射能力。BN 对高质子和中子剂量也具有抗辐射能力,但由于中子诱导损伤,h-BN 会从 sp 2 杂化转变为 sp 3 杂化,并形成 c-BN。宽带隙和超宽带隙半导体对辐射的响应,尤其是单粒子效应,还需要更多的基础研究。© 2021 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ abfc23 ]
摘要 — 我们通过蒙特卡罗模拟、特性良好的静态随机存取存储器 (SRAM) 和射电光致发光 (RPL) 剂量计研究了 CERN 中子飞行时间 (n_TOF) 设施 NEAR 站的中子场,目的是为电子辐照提供中子。模拟了 NEAR 几个测试位置的电子测试相关粒子通量和典型量,并将其与 CERN 高能加速器混合场设施 (CHARM) 的粒子通量和典型量进行比较,突出了相似点和不同点。在参考位置测试了基于单粒子翻转 (SEU) 和单粒子闩锁 (SEL) 计数的 SRAM 探测器(每个探测器具有不同的能量响应)和 RPL 剂量计,并将结果与 FLUKA 模拟进行了对比。最后,将 NEAR 的中子谱与最著名的散裂源和典型的感兴趣环境(用于加速器和大气应用)的中子谱进行比较,显示了该设施用于电子辐照的潜力。
我们表明,单身纠缠是纯粹的费米态偏离Slater决定因素(SD)的衡量标准,并由单粒子密度矩阵(SPDM)的混合性确定,可以视为量子资源。相关的理论具有SDS及其凸面作为自由状态,并且保存费米昂线性光学操作(FLO)的数字包括单体统一转换和单粒子模式占用的测量值,作为基本的自由操作。我们首先是基于纯n- fermion态的schmidt样分解的一体纠缠的两拟合公式,可以得出SPDM [与(n-1)体型密度矩阵]从中得出。随后证明,在FLO操作下,初始和计量后的SPDM始终满足主要化关系,从而确保这些操作平均不能增加一体的纠缠。最终表明,该资源与费米子量子计算模型一致,该模型需要超越反对称的相关性。还讨论了更通用的免费测量以及与模式纠缠的关系。
我们建议通过双音驱动来周期性地调制现场能量,这可以进一步用于设计人工规范势。作为示例,我们表明,使用这种双音驱动设计的人工规范势,可以通过超导通量量子比特构建穿透有效磁通量的费米子阶梯模型。在该超导系统中,由于腿间耦合强度和有效磁通量的竞争,单粒子基态可以从涡旋相变为迈斯纳相。我们还提出了通过相邻量子比特之间的单粒子拉比振荡来实验测量手性电流的方法。与以前产生人工规范势的方法相比,我们的建议不需要辅助耦合器的帮助,并且原则上只有当量子比特电路保持足够的非谐性时才有效。具有有效磁通量的费米子梯子模型也可以解释为一维自旋轨道耦合模型,从而为量子自旋霍尔效应的实现奠定了基础。
摘要。多体系统的量子混沌已迅速发展成为一个充满活力的研究领域,涉及从统计物理学到凝聚态物理、量子信息和宇宙学等各个学科。在具有经典极限的量子系统中,先进的半经典方法提供了经典混沌动力学与量子层面上相应的普遍特征之间的关键联系。最近,处理通常的半经典极限 ℏ → 0 中的遍历波干涉的单粒子技术已经开始转变为类似半经典极限 ℏ eeff = 1 /N → 0 中的 N 粒子系统的场论领域,从而解释了真正的多体量子干涉。这种半经典多体理论为理解单粒子和多体量子混沌系统的随机矩阵相关性提供了一个统一的框架。某些经典轨道和平均场模式的编织束分别控制干涉,并为普遍性的基础提供了关键。所提出的案例研究包括 Gutzwiller 谱密度迹公式和不按时间顺序的相关器的多体版本,以及关于可能取得进一步进展的简要评论。
“爱因斯坦-波多尔斯基-罗森 (EPR) 悖论的建立导致从量子信息的角度提供依赖于观察者的量子态描述。虽然这个问题基于单粒子系统,但可以扩展到多个相同粒子系统。我们提供了实验方案来阐明对相同粒子的量子态描述。该实验方案用于三粒子阿哈罗诺夫玻姆效应。”
北斗卫星导航系统是国家重要的空间基础设施,可为各类用户提供高精度、全天候的定位、导航和授时服务,对导航定位服务精度、信号连续性、系统可用性等有很高的要求(刘建军等,2021)。综合考虑全球覆盖范围、应用价值和成本,国际上各主要全球导航卫星系统一般采用高度20 000km左右的中圆轨道。北斗卫星轨道主要包括倾角0°和55°的中圆轨道、地球同步轨道和倾斜地球同步轨道(夏立,2021;Morley等,2016),这些轨道位于外层地球辐射带的中心或外侧。太阳活动可以诱发空间环境的动态变化和卫星异常,包括充放电效应、单粒子效应和总剂量效应等。 NOAA/SEC从1984年至1992年共记录到954次GPS在轨异常,其中大部分是由单粒子效应和充放电效应引起的。美国GPS卫星太阳能电池阵的退化速度比预想的要快。研究表明,除了粒子辐射的位移损伤外,放电效应强化的太阳能电池阵表面污染应是一个重要诱因。欧洲GIOVE-A卫星上的OBC386计算机在2012年3月的太阳风暴中受干扰的概率是正常卫星的10倍。北斗二号的992次在轨异常中,疑似由充放电和单粒子效应引起的卫星异常约占80%。可见,运行在中高轨道的卫星易受空间环境影响,但缺乏对轨道辐射环境的监测,限制了我们对空间环境分布及其变化机制的认识。通过搭载辐射环境及影响监测探测器于导航卫星上,可充分利用轨道分布均匀、卫星数量多的优势,对中高轨道空间辐射分布及扰动进行全面监测,为中高轨道空间辐射环境监测提供支撑。