本报告描述了CSIRO气候科学中心完成的工作,该工作根据Van Kirap CSiro DP协议和活动范围与活动1.2.4相关的工作范围。它旨在协助VMGD以气候信息服务(CIS)的形式进行宣传和对其部门和社区的利益相关者的形式进行宣传和沟通,包括Van-Kirap的目标部门(农业,渔业,基础设施,旅游业和水)。该报告还为其他用户(例如政府官员,私营部门,顾问,学术界,非政府组织和捐助机构)提供了技术参考和资源文件,他们对气候变化和气候预测有背景知识,这与海平面上升有关,沿海淹没和相关危害。
摘要:近几年,无人驾驶飞行器(UAV)受到越来越多的关注,以执行各种应用,如军事、农业和医疗领域。众所周知,无人机不仅容易受到软件意外故障的影响,而且容易受到环境的影响。因此,安全性应在设计时作为主要要求考虑,因为飞行器的任何意外行为或任何危险都会导致潜在风险。为了在任务期间保持其安全运行,提出了一种基于网络条件事件系统(NCES)的故障安全机制。故障安全机制是一种控制逻辑,用于指导在发生危险时执行的风险降低措施。为了使用形式化模型生成这样的控制器,所提出的流程分为三个阶段:(1)第一阶段包括根据文献中的反应方法进行危险识别和分析,(2)第二阶段允许使用标准 ISO 13849 进行风险评估,以及(3)第三阶段包括执行重新配置场景以在分析安全要求的同时降低风险。使用形式化方法的动机是,它们已被证明有助于在早期设计阶段使开发过程可靠。我们以一个说明性医疗无人机为例,证明了我们的提案的适用性和可行性。
分布 ................................................................................................................................ II
损失 1 [L1]:热失控传播。资产损失:锂离子电池可能会发生热失控。在 BESS 中,一个电池单元的故障可能会导致附近的电池单元发生故障。一个电池单元、一个模块甚至整个串的损失都可以被认为是可以接受的。在本分析中,我们将定义两种被认为是不可接受结果的传播级别:电池单元到电池单元和模块到模块。电池单元到电池单元是指热失控的单个电池单元为另一个电池单元进入热失控创造了条件。模块到模块传播是指一个电池模块单元中一个或多个热失控的电池单元为另一个模块单元中的电池单元进入热失控创造了条件。
•大格式细胞变得越来越普遍。政府禁止生产内燃机(ICE)汽车以及电动汽车(EV)的税收优惠。•汽车停放而不收取1时,大约1/3的电动汽车大火开始。•预计将在10年内从2020年的230 GWH到2030年2300 GWH的电池销售增加465%。•2006年至2011年期间,有三架灾难性的机上飞机火灾,怀疑是锂离子电池的原因。•锂离子细胞的30%充电状态(SOC)限制•建立了SAE G27委员会,以制定锂电池的包装性能标准和用于空中运输中的货物的电池。
→2021年12月,EASA发布了拟议的特殊条件,以解决新设计认证项目CARI中强调的安全问题→2022年4月26日EASA发布了最终的特殊条件M-TS-0000419(过去的参考文献sc- g25.1585-01)和相关的CRD→sib寄给操作员:
危险风险分析 4.1 特殊现场条件或关注点 4.2 活动危险分析 4.2.1 “活动危险分析”表 4.3 人身安全 4.3.1 处理桶和容器 4.3.2 电气危险 4.3.2。公用设施 4.3.2.2 地下公用设施 4.3.3 挖掘和沟渠 4.3.4 火灾和爆炸 4.3.5 热应激 4.3.6 冷应激 4.3.7 噪音 4.3.8 滑倒、绊倒和坠落 4.3.9 手动起重 4.3.10 抛射物体和头顶危险 4.3.11 割伤和撕裂伤 4.3.12 使用梯子 4.4 化学危害 4.4.1 有机蒸气暴露评估 4.4.2 皮肤接触和吸收评估 4.5 生物危害 4.5.1 有毒植物 4.5.2 蜱虫 4.5.2.1 莱姆病 4.5.2.2 落基山斑疹热 4.5.2.3 预防4.5.3 蚊媒疾病 - 西尼罗河病毒 4.5.4 黄蜂和蜜蜂 4.5.5 日晒 4.5.6 监督、CAMP、热点去除、脱水
摘要:新技术正在从根本上改变事故的成因,并需要改变所使用的解释机制。我们需要更好地、更少主观地理解事故发生的原因以及如何防止未来的事故。最有效的模型将超越归咎,而是帮助工程师尽可能多地了解所有相关因素,包括与社会和组织结构相关的因素。本文提出了一种基于基本系统理论概念的新事故模型。这种模型的使用为引入独特的新型事故分析、危险分析、事故预防策略(包括新的安全设计方法、风险评估技术以及设计性能监控和安全指标的方法)提供了理论基础。
10.3 路边危险分析与处理 路边危险分析与处理的程度将取决于改进策略。以下为各种策略提供了指导。在确定改进的道路典型横截面和路面结构需求时,不要降低现有道路走廊沿线的路边安全性。路面表面高程增加应仅限于现有前坡或其他横截面特征(例如路肩坡度和宽度)可以在设计标准的所需范围内改变的程度。所有延续和许多修复改进项目的前坡调整都将限制在现有路基路肩点(即路肩前坡)内。路边危险包括陡峭的道路前坡和设施沿线的固定物体,如 FDM 11-45-20 中进一步所述。如果需要实施较低范围的路肩宽度和横坡,请遵守 FDM 11-40 下的延续和修复指导及其设计灵活性。如果采取了对策,请在最终范围认证 (FSC) 中提供文件。请参阅 FDM 11-4-3 了解 FSC 指南。对于所有改进项目,请在 DSR 中记录最终决策和结果以及路边危害分析和处理。
影响最小空速的因素................................................................................................ 39 船上测试的前提条件................................................................................................. 41 岸基弹射器.............................................................................................................. 41 计算机模拟............................................................................................................... 43 带外部挂载的地面载荷演示............................................................................. 49 Vmc 动态................................................................................................................. 51 ABLIM 功能....................................................................................................... 52 喷气气流导流板兼容性.................................................................................... 52 配置选择.................................................................................................................... 53 发动机准备.................................................................................................................... 54 表面位置校准.................................................................................................................... 54 船上程序.................................................................................................................... 55 飞行前程序.................................................................................................................... 55 机库初始化记录.................................................................................................... 56 飞行前和飞行后环境记录..................................................................................... 56 测试所需条件..................................................................................................... 57 危险分析................................................................................................................. 59 测试技术................................................................................................................. 59