引言。周期性驱动的量子系统规避了平衡态下施加的某些限制。例如,参考文献 [1,2] 中设想的自发破坏时间平移对称性的“时间晶体”不能在平衡态 [3] 下出现,但可以在周期性驱动下出现。在周期性驱动的时间晶体中,任何物理(即非猫)状态都以驱动频率的次谐波演化 [4 – 6] 。规范实现由无序的伊辛自旋组成,它们在每个驱动周期后集体翻转,因此需要两个周期才能恢复其初始状态。实验已经在驱动冷原子 [7,8] 和固态自旋系统 [9 – 11] 中检测到时间晶体性的迹象。作为第二个密切相关的例子,考虑一个一维 (1D) 自由费米子拓扑超导体,它具有马约拉纳端模式 [12],每个模式都由厄米算符 γ 描述。如果 γ 增加能量 E 则 γ † 增加 − E 而埃尔米特性要求它们是等价的。在平衡状态下唯一的解是 E = 0——对应于经过深入研究的马约拉纳零模式。以频率 Ω 周期性驱动还允许携带 E = Ω = 2 的“弗洛凯马约拉纳模式”,因为此时能量仅对模 Ω 守恒[13]。弗洛凯马约拉纳模式被认为比平衡系统促进了更高效的量子信息处理[14-16]。此外,它们编码了一种时间平移对称性破缺的拓扑味道,因为弗洛凯马约拉纳算子在每个驱动周期改变符号,因此也需要两个周期来恢复其初始形式。我们通过探索将库珀对电子耦合到双周期时间晶体伊辛自旋后产生的周期性驱动的一维拓扑超导体来合并上述现象。这种“时间晶体拓扑超导体”交织了体时间平移