为了将该电极用于PEM水电解器,需要使用热压机制造由电解质膜和电极堆叠而成的大型MEA。但是,我们发现很难保持大型MEA的厚度均匀,并且需要以小于1毫米的精度对准MEA组件。为了以小于1毫米的精度对准3000cm2级MEA的组件,我们提高了压板的表面精度,选择了最佳缓冲材料,并设计了独特的对准工艺技术。我们成功地将施加在MEA上的压力变化降低到约10%,从而可以在不影响氢气生产性能的情况下制造大型MEA。我们将致力于尽早将大型MEA商业化,以实现P2G在社会上的广泛使用。
高温地热应用迫切需要耐温耐压设备。例如,最新的美国能源部拨款申请确实侧重于其中一些主题,以改善地热资源的特性 [IJ。在深处实现良好的温度测量是一项具有挑战性的任务,因为它需要能够在恶劣环境中存活数小时(预计 5000 小时,[1])的传感器和材料,即使在超临界条件下(水临界点:376°C - 221 巴)。正如美国能源部 \2[ 指出的那样,还迫切需要在深处进行其他测量,例如压力、pH 值、电导率等。最后,在深处正确收集流体而不通过施加强烈的压力变化或突然的热冷却来干扰它们也是主要关注点。所有这些方面都是美国能源部确定的技术差距的一部分。
要减少欧洲范围内的CO 2排放并减少对化石燃料的依赖,我们需要用可再生的替代品代替当前的能源。氢是广泛产生的有前途的选择,但其使用需要安全的基础设施来运输和存储。现有的欧洲管道网络(为气体和液体设计)可以用于氢气传输。有效的分布对于氢作为能量载体至关重要。虽然钢管管道是经济且可靠的,但通过它们运输氢气却带来了诸如原子氢扩散引起的脆弱之类的挑战。该项目旨在创建一个基于模拟的框架,以对氢负荷下的钢管管道进行全面的安全评估,从而解决基于气体能量密度的压力变化等问题。该框架有望使未来的钢铁开发受益于抗氢诱导的衰竭。
主要结果将是通过感知压力量表 (PSS) 测量的压力变化。要收集的次要结果包括失眠症状清单(失眠严重程度指数,ISI)和焦虑症(广泛性焦虑症-7,GAD-7)。探索性测量包括抑郁症(流行病学研究中心抑郁量表,CES-D)、创伤应激(平民创伤后应激障碍检查表,PCL-C)、总体生活质量 (QOLS)、社会支持 (ISEL-12)、认知功能的多项能力自我报告问卷 (MASQ)、疲劳严重程度量表 (FSS) 和心理健康(抑郁、焦虑和压力量表,DASS-21)。将收集有关 COVID-19 状态、互动、工作场所参与度、医疗保健利用率和暴露的详细信息。干预前后生理参数(心率、心率以及通过心率变异性评估的自主心血管调节指标)的数据收集也将被评估为探索性结果。
这一原理通过管道内流动的流体压力变化来体现,管道内径减小,类似于文丘里管。在逐渐变窄的管道的宽部分,流体以较低的速度流动,产生较高的压力。当管道变窄时,它仍然包含相同量的流体;但由于通道收缩,流体以更高的速度流动,产生较低的压力。这一原理也适用于飞机机翼,因为它的设计和构造具有曲线或拱度。[图 1-9] 当空气沿机翼上表面流动时,它比沿机翼下表面流动的气流行进的距离更大。因此,根据伯努利原理,机翼上方的压力小于机翼下方的压力,从而在低压方向上对机翼上曲面产生升力。
摘要:空气中的红外热扫描仪可用于检测裂缝和洞穴开口,但仅在某些条件下。首先,空隙内的温度必须与外部条件显着不同。其次,必须存在某种机制将这种热差异带到可以被扫描仪检测到的表面。此外,必须确定其他事件是否影响这种机制。在裂缝的情况下,传导和对流都在改变裂缝上的雪桥表面温度方面的作用。对于洞穴,对流是带来温度改变的机制。对流与呼吸周期有关,而呼吸周期又是由气压压力变化引起的。可以从内部温度,外部温度和大气压力的地面测量中选择飞行时间,从而提供最有利的情况。洞穴信号更多是一个问题,因为它经常被其他事件引起的相似信号所包围。为格陵兰岛的裂隙场和波多黎各的洞穴系统提供了结果。
uhs与其他地下应用具有相似之处,例如碳氢化合物开发Christie&Blunt(2001)和地质碳固存(GCS)Moridis等。(2023); Wen等。(2023)。但是,它以更复杂的操作条件为特色。在烃开发中,该过程通常集中在提取上,而GCS仅关乎注射。相比之下,UHS是在循环的基础上运行的,同时结合了注射和提取阶段。在操作条件下的这种复杂性在H 2存储性能中引入了更大的不确定性。在方面,UHS性能的预测取决于基于物理学的储层类似物Lysyy等。(2021);费尔德曼等。(2016); Hogeweg等。(2022); Okoroafor等。(2023)。这些模拟准确地预测了UHS操作过程中地质形式的H 2运动和压力变化。但是,它们在计算上非常密集,因此延迟了大规模UHS部署的速度。加速UHS预测,通过机器学习(ML)转向替代模式提供了有希望的策略。
高度计并不指示地面以上高度,而仅指示相对于您在高度计子刻度上设置的基线的压力变化(以英尺表示)。如果您面临野外着陆,您不太可能知道下方地面的准确高度。高度计误差在高度越低时越明显(图 2,14:3),但程度会有所不同。现代仪器可以非常准确,而旧仪器则不太准确 - 通常是因为机制中的内部摩擦。实际上,在滑翔机开始在高关键区域巡回的正确高度左右,眼睛和高度计的准确度大致相同(其他所有条件相同)。但是,虽然我们越接近地面,眼睛就会越准确,但高度计误差占实际高度的百分比也会增加。因为训练的目的是为了教会飞行员如何在任何地方着陆,所以非常重要的是,对航线高度的判断是基于眼睛看到的东西,而不是高度计显示的东西。
apptracf。我们研究了外源施用的乙酰胆碱,一氧化氮,ADP,ATP,Bra-Dykinin和PESTS P对分离的新生儿猪心(S4 D)中冠状血管张力的影响(S4 D)。节奏(180 bpm),在恒定的冠状动脉流量mL/min/min/g上具有富含红细胞的溶液(HEMATO-CRIT 0.15-0.20),进行逆行主动脉灌注,与MM Hg的灌注压力相对应。激动剂被注入主动脉根,并评估了基线和左心室压力发育的冠状动脉灌注压力变化。一氧化氮(3 jll),ADP(30 nmol),ATP(30 nmol),Bradykinin(125 ng)和物质P(50 ng)降低了16.9±1.2,25.3±4.4,18.4,18.3±4.4,18.3±1.2,18.9±1.m&1.4,&1.4,和1.4,和1.4,和1.4,和1.4±1.4,和1.4±1.4,和1.4,和1.4,和1.4,和1.4±1.4±1.4±1.4±1.4±1.4。乙酰胆碱(0.5和1.0 nmol)产生适度的灌注压力(血管扩张)4.2±0.8和3.8±0.5 mm Hg,而乙酰胆碱(5、20和100 nmol)(5、20和100 nmol)增加了灌注压力(Vasocococcoccoccoccoccotiancy)。分别为15.1 mm Hg。乙酰胆碱还分别从108.7±5.0降低至69.2±4.6、56.3±6.1和48.2±6.4 mm Hg的乙酰胆碱,分别为5、20和100 nmol剂量。对乙酰胆碱的反应被阿托品(50 nmol)废除。在一组单独的心脏中,吲哚美辛(10-6 m)分别降低了5、20和100 nmol剂量的乙酰胆碱的灌注压力变化,分别降低了87%,66%和48%。(Pediatr Res 32:236-242,1992)在其他心脏中,钙通道拮抗剂Nisoldipine(10-7 m)分别降低了5、20和100 nmol剂量的乙酰胆碱的灌注压力的峰值变化,分别降低了87%,77%和56%。总而言之,乙酰胆碱主要导致新生儿猪心中的冠状动脉血管收缩和负性肌力作用。这两种动作都是毒蕈碱受体介导的。我们的数据还表明,环氧酶产物可能部分参与了这种血管收缩,并且细胞外钙的来源有助于血管收缩过程。
摘要。通常,复杂航空航天部件的超声波检测采用喷射技术。然而,水耦合会带来压力变化、气泡、水垢、藻类和机械腐蚀等缺点。因此,最好采用非接触式技术,以避免这些缺点。空气耦合超声波技术可以通过特殊传感器结合特殊发射器和接收器技术来减少空气和固体之间的巨大声学失配。尽管进行了这些优化,但测试频率必须低于 1 MHz。已经发表的研究表明,低超声频率对于检查 CFRP 夹层部件(即使使用水耦合)是必要的。空气耦合超声波检测技术已经适用于测试 CFRP 蜂窝夹层结构。由于传感器在复杂部件的相对侧垂直对齐,因此需要十轴机器人扫描系统。本文介绍了欧洲直升机公司自 2011 年起在多瑙沃特运行的自动空气耦合机器人超声波成像系统的初步结果和细节。该项目是欧洲直升机公司德国分公司、Robo-Technology、EADS Innovation Works、Ing. Büro Dr. Hillger 和 Ostertag 之间的合作项目。