本指南提供有关如何使用内置 Microsoft Word 功能来减小图像大小以及文档大小的信息。在线提交工具对提交的大小有限制,因此减小尺寸有助于轻松上传。
下一步涉及神经网络模型开发。自动编码器和卷积神经网络(CNN)都是深度学习体系结构,但具有不同的目的,并且是为不同类型的任务而设计的。我们使用了自动编码器和CNN。设计了一个基于自动编码器的体系结构,包括编码器和解码器。编码器通过提取基本特征将输入图像压缩为紧凑的潜在表示,而解码器从压缩图像中重新构造了输入图像。CNN体系结构由多个卷积层组成,然后是合并,完全连接的层,有时是标准化层。cnn是一种监督的学习模型,专为涉及数据中的空间层次结构(例如图像)而设计。提取空间和分层特征(边缘,纹理等)用于分类,细分和对象检测等任务。
摘要。我们提出了W.A.L.T,是从文本提示中生成照相视频的分段变压器。我们的方法有两个关键的设计决策。首先,我们使用因果编码器在一个统一的潜在空间内共同压缩图像和视频,从而使跨模态培训和发电。第二,为了记忆和训练效率,我们使用针对关节空间和Spatiotempo-po-ral生成建模的窗口注意体系结构。综合这些设计决策使我们能够在既定视频(UCF-101和Kinetics-600)和Image(ImageNet)生成基准上实现最先进的性能,而无需使用分类免费的指导。最后,我们还培训了三个模型的级联,以完成由基本的潜在视频差异模型组成的文本到视频生成的任务,以及两个视频超分辨率分离模型,以每秒8帧的速度生成512×896分辨率的视频。
摘要:本文收集了两种类型的医学图像,它们来自 CT 扫描和超声系统,目的是在保持图像质量的情况下减少表示医学图像所需的位数。医学成像对疾病诊断和手术准备有很大影响。另一方面,由于医学图像数据量巨大,存储和传输是一个重要问题。例如,每张 CT 图像切片为 512 x 512,数据集由 200 到 400 张图像组成,平均数据量为 150 MB。对医学数据进行有效压缩可以解决存储和传输问题。医学图像使用提出的算法进行压缩,该算法包括两种技术,即离散余弦变换 DCT 和矢量量化 VQ。本文从收集医学图像开始,使用 MATLAB 通过 DCT-QV 开发压缩算法,并通过使用峰值信噪比 PSNR、均方误差 MSE、压缩比 CR 和每像素比特 BPP 测量原始图像和压缩图像之间的差异来评估这些技术的性能。实验结果表明,所提算法压缩后的图像质量较高,量化水平达到30%以上,压缩率达到可接受水平。
与传统数据处理系统相比,量子图像处理因其更快的数据计算和存储速度而备受关注。将传统图像数据转换为量子域和状态标签准备的复杂性仍然是一个具有挑战性的问题。现有技术通常直接连接像素值和状态位置。最近,EFRQI(量子图像的有效灵活表示)方法使用辅助量子位,通过 Toffoli 门将表示像素的量子位连接到状态位置量子位以减少状态连接。由于每个像素连接使用两次 Toffoli 门,因此仍然需要大量位来连接每个像素值。在本文中,我们提出了一种新的 SCMFRQI(状态连接修改 FRQI)方法,通过使用重置门修改状态连接而不是重复使用相同的 Toffoli 门连接作为重置门来进一步减少所需的位数。此外,与其他现有方法不同,我们使用块级压缩图像以进一步减少所需的量子位。实验结果证实,所提出的方法在图像表示和压缩方面均优于现有方法。
Vision Transformer(VIT)在计算机视觉领域取得了重大步骤。然而,随着模型的深度和输入图像的重新分配增加,与培训和运行的VIT模型相关的计算成本急剧上升。本文提出了一个基于CNN和Vision Trans-trans-trans的混合模型,称为CI2P-VIT。该模型包含一个称为CI2P的模块,该模块利用Compressai编码来压缩图像,然后通过一系列连接生成一系列贴片。CI2P可以替换VIT模型中的贴片嵌入组件,从而无缝集成到现有的VIT模型中。与VIT-B/16相比,CI2P-VIT具有减少到原始四分之一的自我发项层的斑块输入数量。此设计不仅显着降低了VIT模型的计算成本,而且还通过引入CNN的电感偏置特性有效地提高了模型的准确性。VIT模型的精度显着提高。在Animal-10数据集的地面上接受训练时,CI2P-VIT的准确率为92.37%,比VIT-B/16基线提高了3.3%。此外,该模型的计算操作以每秒浮点操作(FLOPS)测量,减少了63.35%,并且在相同的硬件配置上的训练速度增加了2倍。
生成模型生成摄影图像的非凡能力加剧了人们对虚假信息传播的担忧,从而导致对能够区分人工智能生成的假图像和真实图像的检测器的需求。然而,缺乏包含来自最先进图像生成器的图像的大型数据集,这对此类检测器的开发构成了障碍。在本文中,我们介绍了 GenImage 数据集,它具有以下优点:1)图像丰富,包括超过一百万对人工智能生成的假图像和收集的真实图像。2)图像内容丰富,涵盖广泛的图像类别。3)最先进的生成器,使用先进的扩散模型和 GAN 合成图像。上述优势使在 GenImage 上训练的检测器经过彻底的评估,并表现出对各种图像的强大适用性。我们对数据集进行了全面分析,并提出了两个任务来评估检测方法在模拟真实场景中的表现。跨生成器图像分类任务衡量了在一个生成器上训练的检测器在其他生成器上测试时的性能。降级图像分类任务评估了检测器处理降级图像(例如低分辨率、模糊和压缩图像)的能力。借助 GenImage 数据集,与现行方法相比,研究人员可以有效地加快开发和评估更优秀的 AI 生成图像检测器。
近年来,量子图像处理在图像处理领域引起了广泛关注,因为它有机会将海量图像数据放入量子希尔伯特空间。希尔伯特空间或欧几里得空间具有无限维度,可以更快地定位和处理图像数据。此外,多种类型的研究表明,量子过程的计算时间比传统计算机更快。在量子域中编码和压缩图像仍然是一个具有挑战性的问题。从文献调查中,我们提出了一种 DCT-EFRQI(直接余弦变换量子图像的高效灵活表示)算法来有效地表示和压缩灰度图像,从而节省计算时间并最大限度地降低准备的复杂性。这项工作旨在使用 DCT(离散余弦变换)和 EFRQI(量子图像的高效灵活表示)方法在量子计算机中表示和压缩各种灰度图像大小。使用 Quirk 模拟工具设计相应的量子图像电路。由于量子比特数的限制,总共使用 16 个量子比特来表示灰度图像的系数及其位置。其中,8 个量子比特用于映射系数值,其余量子比特用于生成相应系数的 XY 坐标位置。理论分析和实验结果表明,与 DCT-GQIR、DWT-GQIR 和 DWT-EFRQI 相比,所提出的 DCT-EFRQI 方案在 PSNR(峰值信噪比)和比特率方面提供了更好的表示和压缩。